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Abstract

In 2007, Nabutovsky and Weinberger provided a solution to a long-
standing problem: to find naturally defined functions that grow faster
than any function with Turing degree of unsolvability 0′. They con-
sidered the functions bk such that, for a natural integer N , bk(N) is
the rank of the kth homology group Hk(G) of maximum finite rank,
among the finitely presented groups G with presentation length ≤ N .
They proved that, for k ≥ 3, function bk grows as the third busy
beaver function, and so grows faster than any function with degree of
unsolvability 0′′.

Can more be said about these functions bk? We give some results
on the function b2, we study the challenge of computing Hk(G) for a
finitely presented group G, and we compute bk(N) for small values of
N .
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1 Introduction

How can one write big natural numbers with few symbols? Ever since
Archimedes, who was the first to tackle this problem, many authors have de-
fined notations designed to fulfill the task, e.g., Ackermann’s function [2, 15],
Knuth’s arrow notation [16, 5], Conway’s chained arrow notation [8].

A step higher than these is Rado’s busy beaver function [26, 20, 23], a non-
computable function that grows faster than any computable function. This
function Σ is defined as follows: For any fixed natural number n, consider
the Turing machines with a single tape, two symbols (0 and 1), and n states
(plus a halting state). Each Turing machine from this finite set is launched
on the empty tape (that is, the tape filled with 0s). Those that halt leave
some symbols 1 on the tape when halting. Then Σ(n) is the maximum num-
ber of 1 left on the tape by halting Turing machines with n states when they
halt. Another noncomputable function S can be defined: S(n) is the maxi-
mum number of computation steps made by Turing machines with n states
that halt when they are launched on the empty tape. It is clear that the
Turing machines used in these definitions are determined by a small number
of conventions, so Σ(n) and S(n) have well defined values for n = 1, 2, 3, . . ..

Then the second busy beaver function can be defined by Turing machines
that use the busy beaver function as an oracle, and of course, the n+1st busy
beaver function can be defined by Turing machines that use the nth busy
beaver function as an oracle. The trouble is that there is no canonical way
to define a Turing machine with oracle, so, for n ≥ 2, the nth busy beaver
function does not have an explicit definition, and we cannot give its values
at 1, 2, 3, . . ..

However, in 2007, Nabutovsky and Weinberger [25] defined functions bk
that grow as the third busy beaver function when k ≥ 3, and do have an
explicit definition, as follows: For any fixed group G, an infinite sequence
of abelian groups, denoted by Hk(G), k ≥ 0, can be defined. The group
Hk(G) is called the kth homology group of the group G. Like any abelian
group, the group Hk(G) has a rank, denoted by bk(G), which is the max-
imum integer r such that the group contains a subgroup isomorphic to Zr

(and the rank is infinite if such a maximum r does not exist). Now, consider
the groups of length ≤ N . A group is of length ≤ N if there is a finite pre-
sentation 〈x1, . . . , xn|r1, . . . , rm〉 of G, with generators x1, . . . , xn and relators
r1, . . . , rm, such that n +

∑m
i=1 length(ri) ≤ N . There is a finite number of

groups of length ≤ N . Then bk(N) is defined as the maximum rank bk(G)
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of a group Hk(G), when G is taken among the groups of length ≤ N with a
finite bk(G).

While the nth busy beaver function has no definite value at 1, 2, 3, . . .,
because it has no formal definition, function bk(N) has an explicit definition.
Until now, the biggest numbers that could be defined explicitly with few sym-
bols were built from Rado’s busy beaver functions. Function bk(N) enables
us to define, explicitly and with few symbols, numbers bigger than those that
have ever been written. Scott Aaronson asked for such numbers in his paper
Who can name the bigger number? [1]. He suggested that nth busy beaver
functions could provide such numbers and he asked for such functions that
would have natural definitions.

For which N do the values bk(N) become really big numbers? To answer
this question, a first step is to compute bk(N) for small values of N . In
this article, we determine bk(N) for 0 ≤ N ≤ 9. Is trying to compute the
first values of a highly noncomputable function an idle occupation? It is a
fact that the same task for Rado’s busy beaver functions have turned out
to be a rich and fruitful activity. Computer searches continue to need the
development of nontrivial programs. The Turing machines involved in these
works have been found to have interesting behaviors, which depend on well
known open problems in number theory [21, 22]. We think that a study of
functions bk(N) will lead to similar surprising discoveries..

In Section 2, we recall some notations in group theory. As we explain
above and in the final section, our results may be of interest to the gen-
eral mathematician, and not just for the expert in both homology theory
and computation theory. So we give detailed preliminaries on these theories
in Sections 3 and 4. In Section 5, we survey the known facts about com-
putability of homology groups, and we present some new results. In Section
6, we present the main result of this paper: the computation of bk(N) when
0 ≤ N ≤ 9. In Section 7, we give some lower bounds on functions bk(N).
We conclude in Section 8 with some prospects for research.

2 Preliminaries: group theory

We will write groups both multiplicatively and additively. The unit is de-
noted by 1, and the trivial group {1} is denoted by 0. Isomorphism of groups
G1 and G2 is denoted by G1

∼= G2. The finite cyclic group of order n, Z/nZ,
is denoted by Zn. The free product of groups G1 and G2 is denoted by
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G1 ∗ G2. The free product of group G with itself n times, G ∗ · · · ∗ G, is
denoted by G∗n. The direct product of groups G1 and G2 is denoted by
G1 × G2. The direct sum of groups G1 and G2 is denoted by G1 ⊕ G2. Of
course, G1 ×G2

∼= G1 ⊕G2, but we use both notations to make a difference
between the studied groups and their homology groups. The direct product
of group G with itself n times, G× · · · ×G, is denoted by Gn, as usual.

Let F be the free group on the set of generators X = {x1, x2, . . .}. Let
X−1 = {x−1

1 , x−1
2 , . . .}, let r1, r2, . . . be words with letters in X ∪X−1, and let

R be the normal closure of {r1, r2, . . .} in F . Then the group G = F/R is said
to have a presentation with generators {x1, x2, . . .} and relators {r1, r2, . . .},
and is denoted by G = 〈x1, x2, . . . |r1, r2, . . .〉. The group G is finitely pre-
sented if it has a finite presentation G = 〈x1, . . . , xn|r1, . . . , rm〉 with finite
numbers of generators and relators. The free group with n generators is
Fn = 〈x1, . . . , xn|∅〉 ∼= Z∗n. The free group with infinite denumerable gener-
ators is denoted by F∞ (see [14, 19] for more details).

The length of a finite presentation 〈x1, . . . , xn|r1, . . . , rm〉 is n +
∑m

i=1

length(ri). A group is of length ≤ N if it has a finite presentation of length
≤ N . A group is of length N if it is of length ≤ N , but not of length ≤ N−1.
The length of G is denoted by length(G).

A commutator in a group G is an element [x, y] = x−1y−1xy with x, y ∈ G.
If A, B are nonempty subsets of G, then [A,B] is the subgroup generated
by the set of commutators [a, b], with a ∈ A, b ∈ B. The subgroup [A,G]
is normal in G. The subgroup [G,G], also denoted by G′, is the derived
group of group G. When N is a normal subgroup of G, the quotient G/N is
abelian if and only if [G,G] ⊆ N . So G/[G,G] is the largest abelian factor
group of G, called the abelianization of G, and denoted by Gab. We have
〈x1, . . . , xn|r1, . . . , rm〉ab

∼= 〈x1, . . . , xn|r1, . . . , rm, ([xi, xj])1≤i<j≤n〉.

3 Preliminaries: homology of groups

3.1 Definition and examples

Let G be a group. We give below two definitions for the sequence H1(G),
H2(G), . . . , of homology groups with coefficients in Z. Unfortunately, none
of them is simple. See [12, 17, 27, 31] for more on homology of groups.

First definition. For any group G, there exists a path-connected topo-
logical space BG, called classifying space, or space of type (G, 1), such that
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π1(BG) ∼= G and πk(BG) ∼= 0 if k 6= 1 [29]. The space BG is unique up
to homotopy equivalence, so the nth integral homology group Hn(BG) does
not depend on the choice of BG. Then the nth homology group of G with
coefficients in Z is defined by Hn(G) = Hn(BG).

Second definition. Let ZG be the group ring of G. By definition, ZG =
{
∑

g∈G ngg : ng ∈ Z, ng = 0 for all but a finite number of g}, with the obvious
addition and multiplication. The additive group Z is a ZG-module for the
trivial action: gn = n if g ∈ G and n ∈ Z. A free resolution of Z is an exact
sequence

· · · dn+1−→Mn
dn−→ · · ·M1

d1−→M0
d0−→ Z −→ 0

where Mn are free ZG-modules, and Ker dn = Im dn+1.
Tensoring a free ZG-module Mn by ⊗ZGZ is nothing but killing the action

of G (because (gx)⊗ k = x⊗ (gk) = x⊗ k if g ∈ G, x ∈ Mn, k ∈ Z), so we
get a (not necessarily exact) sequence of abelian groups

· · · ∂n+1−→Mn ⊗ZG Z ∂n−→ · · ·M1 ⊗ZG Z ∂1−→M0 ⊗ZG Z

where ∂n(x⊗ k) = (dnx)⊗ k if x ∈ Mn and k ∈ Z. Then the nth homology
group of G is defined by Hn(G) = Ker ∂n/Im ∂n+1.

Example 1. Let G = 〈x|xk〉 ∼= Zk. Then ZG = {
∑k−1

i=0 nix
i : ni ∈ Z}. Let

s = x − 1 ∈ ZG, t = 1 + x + · · · + xk−1 ∈ ZG. Then st = xk − 1 = 0. The
exact sequence of ZG-modules is defined as follows. Let Mn = ZG for n ≥ 0.
The homomorphism d0 : ZG→ Z is defined by d0(

∑k−1
i=0 nix

i) =
∑k−1

i=0 ni. If
u ∈ ZG, let du be the multiplication by u. Then, let d2n+1 = ds for n ≥ 0,
and d2n = dt for n ≥ 1. It is easy to see that Im ds = Ker dt = (ZG)s and
Im dt = Ker ds = (ZG)t, so the following sequence is exact

· · · dt−→ ZG ds−→ · · ·ZG dt−→ ZG ds−→ ZG d0−→ Z −→ 0.

Tensoring by ⊗ZGZ, we get Mn ⊗ZG Z ∼= Z, ∂2n+1 = ∂s = 0, and ∂2n = ∂t

is multiplication by k. So Im ∂2n+1
∼= 0, Ker ∂2n+1

∼= Z, Im ∂2n
∼= kZ, Ker

∂2n
∼= 0, H2n+1(Zk) = Ker ∂2n+1/Im ∂2n+2

∼= Z/kZ = Zk, and H2n(Zk) =
Ker ∂2n/Im ∂2n+1

∼= 0.

Example 2. LetG = 〈x, y|xyx−1y〉. We define d0 : ZG→ Z by d0(
∑

g ngg) =∑
g ng, we define d1 : ZG2 → ZG by d1(1, 0) = x−1, d1(0, 1) = y−1, and we
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define d2 : ZG→ ZG2 by d2(1) = (yx−1y−x−1y, x−1y+1), using Fox deriva-
tive (for more details see for example [14]). Finally, we define d3 : 0 → ZG.
Then the following sequence is a free resolution of Z

0
d3−→ ZG d2−→ ZG2 d1−→ ZG d0−→ Z −→ 0.

Tensoring with Z, we get

0
∂3−→ Z ∂2−→ Z2 ∂1−→ Z

where ∂1(n,m) = 0, ∂2(n) = (0, 2n). So H1(G) = Ker ∂1/Im ∂2
∼= Z ⊕ Z2,

and Hn(G) ∼= 0 for n ≥ 2.

The rank of an abelian group A is the greatest number r ≥ 0 such that
Zr is a subgroup of A. It can also be defined as the maximum number of
independent members of A, or as the dimension of the real vector space
A⊗Z R. The rank is infinite if Zr is a subgroup of A for all natural numbers
r. The rank of the homology group Hq(G) is denoted by bq(G) and is called
the qth Betti number of G.

3.2 A toolkit to compute some homology groups

We will see in Section 5 that there is no algorithm to compute Hn(G) from
a finite presentation of group G, if n ≥ 2. However, the following facts will
enable us to compute homology groups for most of the cases we will meet.

(a) A zeroth homology group with coefficients in Z can be defined, with
H0(G) ∼= Z for all groups G.

(b) H1(G) ∼= Gab = G/[G,G], the abelianization of G.

(c) Let G = F/N with F a free group, and N a normal subgroup of F .
Then Hopf’s formula gives

H2(G) ∼= (N ∩ [F, F ])/[N,F ].

(d) Infinite cyclic group.
H1(Z) ∼= Z,

and, if q ≥ 1,
Hq(Z) ∼= 0.
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(e) Finite cyclic groups. If q ≥ 1, then

H2q(Zn) ∼= 0,

and if q ≥ 0, then
H2q+1(Zn) ∼= Zn

(see Example 1 above).

(f) Free group with n generators.

H1(Fn) ∼= Zn,

and, if q ≥ 2,
Hq(Fn) ∼= 0.

(g) Free abelian group with n generators. If n, q ≥ 1, then

Hq(Zn) ∼=
q∧

Zn ∼= Z(n
q).

(h) Free product of groups. If q ≥ 1, then

Hq(G1 ∗G2) ∼= Hq(G1)⊕Hq(G2).

(i) Direct product of groups. If n ≥ 1, then

Hn(G1×G2) ∼=

( ⊕
p+q=n

Hp(G1)⊗Z Hq(G2)

)
⊕

( ⊕
p+q=n−1

Tor(Hp(G1), Hq(G2))

)
,

with p, q ≥ 0.

The following isomorphisms can help to compute this expression.

For any Z-modules A, B, we have

A⊗Z B ∼= B ⊗Z A,

A⊗Z (B ⊕ C) ∼= (A⊗Z B)⊕ (A⊗Z C),

0⊗Z A ∼= 0,

Z⊗Z A ∼= A,
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Ap ⊗Z B
q ∼= (A⊗Z B)pq,

Za ⊗Z Zb
∼= Zgcd(a,b) if a, b ≥ 2.

The same isomorphisms hold for Tor(A,B), except for the fourth one:

Tor(A,B) ∼= Tor(B,A),

Tor(A,B ⊕ C) ∼= Tor(A,B)⊕ Tor(A,C),

Tor(0, A) ∼= 0,

Tor(Z, A) ∼= 0,

Tor(Ap, Bq) ∼= Tor(A,B)pq,

Tor(Za,Zb) ∼= Zgcd(a,b) if a, b ≥ 2.

For example, if G1 = Z, G2 = G, then for all p, q ≥ 0,

Tor(Hp(Z), Hq(G)) ∼= 0,

and for all p ≥ 2,
Hp(Z)⊗Z Hq(G) ∼= 0,

so

Hn(Z×G) ∼= (H0(Z)⊗ZHn(G))⊕(H1(Z)⊗ZHn−1(G)) ∼= Hn(G)⊕Hn−1(G).

From this we deduce that, for all r ≥ 2,

H1(Z× Zr) ∼= Z⊕ Zr,

and, if n ≥ 2, then
Hn(Z× Zr) ∼= Zr.

(j) Finite groups. If G is a finite group of order r, then, for all q ≥ 1, Hq(G)
is a finite abelian group of exponent r (the exponent of an abelian group
A is the least n > 0 with nA = {0}).
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(k) One-relator groups. Let G = 〈x1, . . . , xn|r〉 be a finitely presented one-
relator group.

If r is not a proper power, then

H2(G) ∼=
{

Z if r ∈ [Fn, Fn]
0 if r /∈ [Fn, Fn]

and
Hq(G) ∼= 0 if q ≥ 3.

If r = sm with m maximum, m ≥ 2, then

H2(G) ∼=
{

Z if s ∈ [Fn, Fn]
0 if s /∈ [Fn, Fn]

H2q(G) ∼= 0 if q ≥ 2,

and
H2q+1(G) ∼= Zm if q ≥ 1.

4 Preliminaries: computability and busy beaver

functions

The Turing machines we consider have a two way infinite tape, made of cells.
Each cell contains a symbol. A machine has a tape head which moves on
the tape, reading and writing symbols on the cells. A machine has a finite
number of states and performs computations made of steps. At each step,
according to the current state and the symbol read on the current cell, the
machine writes on this cell, moves one cell left or right, and enters a new
state. The computation stops when a special state H is reached.

Formally, a Turing machine is defined by the next move function, which
is a mapping

δ : Q× S −→ S × {Left, Right} × (Q ∪ {H}),

where Q = {A,B, . . .} is the finite set of states, S = {0, 1, . . .} is the finite set
of symbols, {Left, Right} is the set of directions, and H is the final state. By
convention, H /∈ Q. If δ(p, a) = (b,X, r), then it means that, if the Turing
machine is in state p, reading symbol a on the current cell, then it writes
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symbol b on the cell instead of a, it moves to the cell next to the current cell,
in the direction X ∈ {Left, Right}, and it enters state r. Initially, the state is
the initial state A, the cells contains a word of finite length called the input,
and the tape head scans the first letter of the input. If the final state H is
reached, then the machine stops. Then the word written on the tape is the
output. If input and output are codes for natural numbers, then the Turing
machine computes a function on natural numbers. The Church-Turing Thesis
states that Turing machines provide a universal model of computation. That
is, a function on natural numbers is computable (or recursive) if and only if it
is computable by a Turing machine. A set of natural numbers is computably
enumerable (or recursively enumerable) if it is the range of a computable
function.

Now, consider Turing machines with two symbols, so S = {0, 1}. There
are (4(n + 1))2n Turing machines with two symbols and n states. Each of
them can be launched on a blank tape, that is a tape filled with the blank
symbol 0. Then each machine can either reach state H and stop, or else never
stop. The machines that stop are called busy beavers. If M is a busy beaver,
we denote by s(M) the number of steps taken by M to stop, and by σ(M)
the number of symbols 1 left on the tape by M when it stops. The busy
beavers with n states compete in two competitions: to take the maximum
number of steps to stop, and to leave the maximum number of symbols 1 on
the tape when stopping. So two busy beaver functions can be defined:

S(n) = max{s(M) : M is a busy beaver with n states},

Σ(n) = max{σ(M) : M is a busy beaver with n states}.

It is known that functions S and Σ are not computable, and grow faster than
any computable function. That is, for any computable function f , there is
a natural number n0 such that, for all n ≥ n0, we have S(n) > f(n). The
values of S(n) and Σ(n) are known for n = 2, 3, 4 [26, 18, 7], and are still
the subject of active research for n = 5, 6 [20, 23].

An oracle Turing machine has an additional tape, the oracle tape, that
contains some information which is called the oracle. We will not give a
formal definition of an oracle Turing machine, because there is no agreement
on such a definition (see [28] for an example of definition). If the oracle is
computable, then it is useless, because it could have been computed directly
by the Turing machine. So the oracle is useful when it is not computable. For
example, it can be the halting problem for Turing machines: given (M,x),
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where M is a (code for a) Turing machine, and x an input, the oracle says
whether or not M stops on input x. Or it can be the busy beaver function S.
It can be proved that a Turing machine with oracle the halting problem can
compute S, and that a Turing machine with oracle S can solve the halting
problem. So both belong to the same degree of unsolvability.

Formally, we write A ≤T B if A can be computed by a Turing machine
with oracle B. We write A ≡T B if A ≤T B and B ≤T A. The degree
of unsolvability of A is deg(A) = {B : B ≡T A}. The halting problem is
denoted by K0, and the halting problem for a Turing machine with oracle
A is denoted by KA

0 , or by A′, and is called the jump of A. Note that
K0 = ∅′. The nth jump of A, denoted by A(n), is defined by iteration:
A(0) = A and A(n+1) = (A(n))′. We denote 0(n) = deg(∅(n)). So 0 is the
degree of computable sets and functions, and 0′ is the degree of K0 and also
of function S. The following lemma will be useful (see [28]).

Lemma 4.1 A function f(n) is computable with oracle A′ if and only if
there is a function g(n, k) computable with oracle A, such that, for all n,
f(n) = limk→∞ g(n, k).

Following Nabutovsky and Weinberger [25], we use the following defini-
tions. A Turing machine of order 1 is a Turing machine without oracle, and,
for k ≥ 2, a Turing machine of order k is a Turing machine that has as
oracle the halting problem for the Turing machines of order k − 1. The kth
busy beaver function Bk(n) is the maximum number of steps taken by a Tur-
ing machine of order k with n states and two symbols that stops when it is
launched on a blank tape. So B1(n) is the usual busy beaver function S(n) as
defined above. Note that these definitions are informal ones, since we have
not given a formal definition for an oracle Turing machine. In particular,
Bk(n) has no definite value for k, n ≥ 2. Nonetheless, the results below will
be true for any reasonable choice of a formal definition for an oracle Turing
machine. Let us recall that a function f grows faster than a function g if
there exists a natural number n0 such that, for all n ≥ n0, f(n) > g(n).

Proposition 4.2 (i) A function is computable by a Turing machine of
order k if and only if it is computable with oracle ∅(k−1).

(ii) The function Bk is computable with oracle ∅(k) and grow faster than
any function computable with oracle ∅(k−1).
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(iii) The halting problem for Turing machines of order k and the computa-
tion of Bk belong to the same degree of unsolvability 0(k).

5 Computability of homology groups

The fact that homology groups are generally not computable may seem sur-
prising, because the definition of homology groups by free resolution and
tensoring seems to give an algorithm, and one can ask where the noncom-
putability comes in. The answer is that it is the passage from a finite presen-
tation of a group to its multiplication table that is not computable. There
is no algorithm to solve the word problem: Given a finite presentation of a
group and a word made from the generators, does this word represent the
unit element of the group?

5.1 Computability of H1(G) and H2(G)

We first consider finitely presented groups. The computation of H1(G) from
a finite presentation of a group G is well known (see e.g. [24]), and can be
summed up as follows.

Theorem 5.1 Let G be finitely presented group. Then

(i) H1(G) ∼= Gab is a finitely generated abelian group with a normal form
which is computable from the finite presentation of G.

(ii) b1(G) is computable from the finite presentation of G.

(iii) For all N ≥ 0, we have b1(N) = N .

Proof. Let G = 〈x1, . . . , xn|r1, . . . , rm〉 be a finitely presented group, given
by its finite presentation. Then H1(G) ∼= Gab is a finitely generated abelian
group. So it has the normal form H1(G) ∼= Zd1⊕· · ·⊕Zdl

⊕Zk, where k,l ≥ 0,
di ≥ 2 and di divides di+1 for all i. Moreover, k, l and the di can be effectively
computed from the finite presentation of G. In particular, b1(G) = k, so the
function b1(G) is computable from a finite presentation of G. Then b1(N) is
computable by computing b1(G) for all groups G of lengths ≤ N and taking
the maximum result.

If 〈x1, . . . , xn|r1, . . . , rm〉 is a finite presentation of group G with minimal
length, then Gab has at most n generators, so b1(G) ≤ n ≤ length(G). On
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the other hand, for G = Fn = 〈x1, . . . , xn|∅〉, we have H1(G) ∼= Zn, so
b1(G) = n = length(G). Thus, the maximum value of b1(G) for a group G of
length ≤ N is N , achieved for G = FN . �

Let us consider H2(G) for a finitely presented group G. The situation
becomes more complicated, as shown by the following theorem, where state-
ments (iv) to (vi) are new results.

Theorem 5.2 Let G be a finitely presented group. Then

(i) H2(G) is a finitely generated abelian group, with a number of generators
less than or equal to the number of relators of G.

(ii) A normal form for H2(G) can be computed with oracle ∅′.

(iii) There is no algorithm to decide, given a finite presentation of G, whether
H2(G) ∼= 0.

(iv) There is no algorithm to decide, given a finite presentation of G, whether
b2(G) = 0.

(v) The function which maps a finite presentation of G to b2(G) is not
computable, but is computable with oracle ∅′.

(vi) The function N 7→ b2(N) is computable with oracle ∅′.

Proof. (i) We recall the proof of this well known result (see e.g. [24]). Let
G = 〈x1, . . . , xn|r1, . . . , rm〉. If N is the normal subgroup of the free group Fn

on n generators, generated by the relators r1, . . . , rm, we have G ∼= Fn/N , and
Hopf’s formula gives H2(G) ∼= (N ∩ [Fn, Fn])/[N,Fn]. The group N/[N,Fn]
is an abelian group, generated by the set of cosets {ri[N,Fn] : 1 ≤ i ≤ m},
so it is a finitely generated abelian group, with at most m generators. The
group (N ∩ [Fn, Fn])/[N,Fn] is a subgroup of N/[N,Fn], so it is a finitely
generated abelian group with at most m generators.

(ii) Gordon [10] attributed to Casson the observation that a set of rela-
tors for H2(G) can be computably enumerated. From a finite presentation
〈x1, . . . , xn|r1, . . . , rm〉 of G, we can compute generators y1, . . . , ym and rela-
tors (si)i≥1 for H2(G), where the sequence (si)i≥1 is computably enumerable.
For any k, we can compute a normal form for the finitely generated abelian
group 〈y1, . . . , ym|s1, . . . , sk〉ab. So the functions hk that compute such a nor-
mal form from a finite presentation of G are computable. By Lemma 4.1,
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the function h = limk→∞ hk is computable with oracle ∅′, and gives a normal
form for H2(G) from a finite presentation of G.

(iii) This is the main result in Gordon’s article [10].
(iv) This new result can be easily obtained from Gordon’s methods, as

follows. We resume the proof of Theorem 4 in Gordon’s article [10]. From
a finite presentation 〈x1, . . . , xn|r1, . . . , rm〉 of a group G with an unsolvable
word problem, and a word w with letters in {x1, . . . , xn, x

−1
1 , . . . , x−1

n }, this
proof defines a finitely presented group Hw such that

w = 1 in G =⇒ H2(Hw) = 0,

w 6= 1 in G =⇒ there is a homomorphism that maps H2(Hw) onto Z.
So H2(Hw) = 0 iff w = 1 in G, and it is undecidable whether H2(Hw) = 0,
thus we get the result stated above in (iii). But we have also

w = 1 in G =⇒ b2(Hw) = 0,

w 6= 1 in G =⇒ b2(Hw) ≥ 1.

So b2(Hw) = 0 iff w = 1 in G, and the question of whether b2(Hw) = 0 is
undecidable.

(v) This is clear from statements (ii) and (iv).
(vi) This comes from statement (v). With oracle ∅′, b2(G) can be com-

puted for all groups in the finite set of groups of length ≤ N . Then taking
the maximum value gives b2(N). �

It is not known whether b2(N) is a computable function of N . Note that
b2(N) ≤ N for all N ≥ 0, since the number of generators of H2(G) is no
larger than the number of relators of G. We conjecture that b2(N) ≤

⌊
N
4

⌋
.

Consider now the groups that are finitely generated and have a com-
putably enumerable presentation. That is, the set of relators is a computably
enumerable set of words. By a theorem of Higman [13], these groups are ex-
actly the finitely generated subgroups of finitely presented groups. Therefore,
there are two ways to present such groups by a finite description. First, group
G can be given by a finite program that enumerate the set of relators of G.
Second, group G can be given by a finite presentation of a group K and a
finite list of words from K that generate G as a subgroup of K. For such
a group G, Baumslag, Dyer and Miller [3] proved that Hq(G) has a com-
putably enumerable presentation for all q ≥ 1, but Bogley and Harlander [6]
proved that there is no algorithm to decide whether H1(G) ∼= 0 or whether
H2(G) ∼= 0.
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5.2 Computability of Hq(G) for q ≥ 3

For q ≥ 3, if G is finitely presented, then Hq(G) is an abelian group with a
computably enumerable presentation, and, moreover, for any abelian group
A with a computably enumerable presentation, and any q ≥ 3, there is a
finitely presented group G such that Hq(G) ∼= A [3].

Let us say that function f grows as function g if there are computable
functions ϕ and ψ, and an integer n0 such that, for all n ≥ n0, f(ϕ(n)) > g(n)
and g(ψ(n)) > f(n). Nabutovsky and Weinberger [25] proved the following
theorem.

Theorem 5.3 For q ≥ 3, the function bq(N) grows as the third busy beaver
function B3.

So we have the following result.

Corollary 5.4 Let q ≥ 3. Then

(i) The function N 7→ bq(N) is not computable with oracle ∅′′.

(ii) The function which maps a finite presentation of the group G to bq(G)
is not computable with oracle ∅′′.

Proof. (i) Function B3 grows faster than any function computable with
oracle ∅′′, and so does bq(N).

(ii) Consider the function that maps a finite presentation of G to bq(G).
If it was computable with oracle ∅′′, then so should be bq(N), by taking the
maximum bq(G) among the groups of length ≤ N . �

6 Values of bq(N) for 0 ≤ N ≤ 9

In this section we prove the following theorem.

Theorem 6.1 (i) b2(N) =

{
0 if 0 ≤ N ≤ 5
1 if 6 ≤ N ≤ 9

(ii) If 0 ≤ N ≤ 9 and q ≥ 3, then bq(N) = 0.

Proof. The theorem is proved by the following procedure.
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1. We enumerate the presentations 〈x1, . . . , xn|r1, . . . , rm〉 of length N .

2. For each one, we find if the corresponding group has length < N , or
is isomorphic to an already found group of length N . Then we get the
list of groups of length N .

3. We compute the homology groups Hq(G), q ≥ 1, for each group G from
the list of groups of length N .

4. We compute the ranks bq(G) of these homology groups.

5. Then bq(N) is the maximum of these ranks.

This procedure is tedious but straightforward. We give some details for
each stage.

Stage 1. To avoid some pitfalls in the enumeration of presentations, normal
forms for relators must be used with precaution. For example, group Z9 has
the obvious presentation 〈x|x9〉 of length 10. But it has also the shorter one
〈x, y|x3y, y3〉 of length 9.

For future studies, we give the relators involving two generators x and y,
of length ≤ 6, up to the following transformations: circular permutations,
taking inverse, exchanges of x and y, of x and x−1 and of y and y−1.

• Length 3: x2y.

• Length 4: x3y, x2y2, (xy)2, xyx−1y, xyx−1y−1.

• Length 5: x4y, x3y2, x2yxy, x2yxy−1, x2yx−1y, x2yx−1y−1.

• Length 6:

x5y x3yxy−1 x2yx2y−1 x2yx−2y−1 xyxyx−1y−1

x4y2 x3yx−1y x2yxy2 x2yx−1y−2 xyxy−1x−1y−1

x3y3 x3yx−1y−1 x2yxy−2 (xy)3 xyx−1yxy−1

x3yxy (x2y)2 x2yx−2y xyxyxy−1

Stage 2. Most groups we find can be described using group Z, cyclic groups
Zn and free products or direct products, so it is easy to detect isomorphic
groups. As an example, we give the details for the groups of length 6 to 8
with a presentation 〈x, y|r〉 where r is a relator of length 4 to 6.
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Groups 〈x, y|r〉 with r of length 4.
Six such relators have to be considered: x4, x2y2, xyxy, xyxy−1, xyx−1y

and xyx−1y−1. But

• 〈x, y|xyxy−1〉 ∼= 〈y, x|yxy−1x〉,

• 〈x, y|x2y2〉 ∼= 〈u, v|uvu−1v〉 with u = y−1 and v = xy,

• 〈x, y|xyxy〉 ∼= 〈x, u|u2〉 of length 4, with u = xy.

So three groups are left:

• 〈x, y|x4〉 ∼= Z ∗ Z4,

• 〈x, y|xyx−1y−1〉 ∼= Z2,

• 〈x, y|xyx−1y〉.

The last group is the semidirect product of normal subgroup N = {yn : n ∈
Z} with subgroup M = {xn : n ∈ Z}. Both these subgroups are isomorphic
to Z, so we denote the group by Z n Z. The three groups Z ∗ Z4, Z2 and
Z n Z were not found in the study of groups of length ≤ 5, so they have
length 6.

Groups 〈x, y|r〉 with r of length 5.
Seven relators have to be considered: x5, x4y, x3y2, x2yxy, x2yxy−1,

x2yx−1y, x2yx−1y−1. But

• 〈x, y|x4y〉 ∼= 〈x|x4〉 of length 5,

• 〈x, y|x3y2〉 ∼= 〈x, u|x2ux−1u〉 with u = xy,

• 〈x, y|x2yxy〉 ∼= 〈x, u|xu2〉 of length ≤ 5, with u = xy.

So four groups are left:

• 〈x, y|x5〉 ∼= Z ∗ Z5,

• 〈x, y|x2yxy−1〉 = K1,

• 〈x, y|x2yx−1y〉 = K2,

• 〈x, y|x2yx−1y−1〉 ∼= BS(1,2).
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Group K2 and the Baumslag-Solitar group BS(1,2) have isomorphic abelian-
izations. They are not isomorphic because they have derived groups that are
not isomorphic: K ′2

∼= Z∗2 and BS(1,2)′ ∼= Z
[

1
2

]
. The derived groups are

determined by the Reidemeister-Schreier method, described for example in
[14, 19].

Groups 〈x, y|r〉 with r of length 6.
The study led to the following nine groups.

• 〈x, y|x6〉 ∼= Z ∗ Z6,

• 〈x, y|x2yxy−2〉 ∼= K3,

• 〈x, y|x2yx−1y−2〉 ∼= K4,

• 〈x, y|x2yx−2y−1〉 ∼= BS(2,2),

• 〈x, y|x3yx−1y〉 ∼= K5,

• 〈x, y|x3yx−1y−1〉 ∼= BS(1,3),

• 〈x, y|x3yxy−1〉 ∼= K6,

• 〈x, y|x2yx2y−1〉 ∼= K7,

• 〈x, y|x3y3〉 ∼= K8.

Moreover, K3 6∼= K4 because K ′3
∼= Z∗3, K ′4 ∼= Z∗2, K5 6∼= BS(1,3) because

K ′5
∼= Z∗3, BS(1,3)′ ∼= Z

[
1
3

]
, and K6 6∼= K7 because K ′6

∼= Z
[

1
3

]
, K ′7

∼= Z×F∞.

Stage 3. The computation of homology groups is easy using the tools from
Section 3.2, with two exceptions: 〈x, y|x2yx−1y, y2〉 ∼= S3 (the symmetric
group with 6 elements) and 〈x, y|xyx−1y, y3〉 ∼= Z3 n Z. It is known that, for
all n ≥ 1, H2n(S3) ∼= 0, and, for all n ≥ 0, H4n+1(S3) ∼= Z2, H4n+3(S3) ∼= Z6.
The homology groups of Z3 n Z is given by the proposition below. We have
H1(Z3 n Z) ∼= Z and, if q ≥ 2, Hq(Z3 n Z) ∼= 0 if q ≡ 1, 2 (mod 4),
Hq(Z3 n Z) ∼= Z3 if q ≡ 0, 3 (mod 4).

Stages 4 and 5. The ranks of the homology groups and the maximum rank
can be easily computed.
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length generators relators groups H1
H2n

n ≥ 1
H2n+1

n ≥ 1
0 ∅ ∅ 0 0 0 0
1 x ∅ Z Z 0 0
2 x, y ∅ Z∗2 Z2 0 0
3 x, y, z ∅ Z∗3 Z3 0 0

x, y x2 Z2 Z2 0 Z2

4 x, y, z, t ∅ Z∗4 Z4 0 0
x, y x2 Z ∗ Z2 Z⊕ Z2 0 Z2

x x3 Z3 Z3 0 Z3

5 x, y, z, t, u ∅ Z∗5 Z5 0 0
x, y, z x2 Z∗2 ∗ Z2 Z2 ⊕ Z2 0 Z2

x, y x3 Z ∗ Z3 Z⊕ Z3 0 Z3

x x4 Z4 Z4 0 Z4

Table 1: The 12 groups of length ≤ 5

generators relators groups H1 H2
H2n+1

n ≥ 1
H2n

n ≥ 2
x, y, z, t, u, v ∅ Z∗6 Z6 0 0 0
x, y, z, t x2 Z∗3 ∗ Z2 Z3 ⊕ Z2 0 Z2 0
x, y, z x3 Z∗2 ∗ Z3 Z2 ⊕ Z3 0 Z3 0
x, y x4 Z ∗ Z4 Z⊕ Z4 0 Z4 0

xyx−1y Z n Z Z⊕ Z2 0 0 0
xyx−1y−1 Z2 Z2 Z 0 0
x2, y2 Z∗22 Z2

2 0 Z2
2 0

x x5 Z5 Z5 0 Z5 0

Table 2: The 8 groups of length 6
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generators relators groups H1 H2
H2n+1

n ≥ 1
H2n

n ≥ 2
x, y, z, t, u,

v, w
∅ Z∗7 Z7 0 0 0

x, y, z, t, u x2 Z∗4 ∗ Z2 Z4 ⊕ Z2 0 Z2 0
x, y, z, t x3 Z∗3 ∗ Z3 Z3 ⊕ Z3 0 Z3 0
x, y, z x4 Z∗2 ∗ Z4 Z2 ⊕ Z4 0 Z4 0

xyx−1y Z ∗ (Z n Z) Z2 ⊕ Z2 0 0 0
xyx−1y−1 Z ∗ Z2 Z3 Z 0 0
x2, y2 Z ∗ Z∗22 Z⊕ Z2

2 0 Z2
2 0

x, y x5 Z ∗ Z5 Z⊕ Z5 0 Z5 0
x2yxy−1 K1 Z⊕ Z3 0 0 0
x2yx−1y K2 Z 0 0 0
x2yx−1y−1 BS(1,2) Z 0 0 0
x3, y2 Z2 ∗ Z3 Z2 ⊕ Z3 0 Z2 ⊕ Z3 0

x x6 Z6 Z6 0 Z6 0

Table 3: The 13 groups of length 7

The results are given in Tables 1 to 6. We give all groups of length ≤ 8 in
Tables 1 to 4. In Tables 5 and 6, we give all groups of length 9, except groups
with one relator of length 6 or 7 which is not a proper power of a relator.
We know that such one-relator groups have homology groups H2(G) ∼= 0 or
Z and Hq(G) ∼= 0 if q ≥ 3. �

The homology groups of group 〈x, y|xyx−1y, y3〉 of length 9 cannot be
computed from the tools of Section 3.2. The following proposition gives the
results, and has an independent interest.

Proposition 6.2 Let G = 〈x, y|xyx−1y, yn〉, n ≥ 2. Then

H1(G) ∼=
{

Z⊕ Z2 if n is even
Z if n is odd

and, for all q ≥ 2,

(i) if q ≡ 0, 3 (mod 4), Hq(G) ∼= Zn,
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generators relators groups H1 H2
H2n+1

n ≥ 1
H2n

n ≥ 2
x, y, z, t,
u, v, w, s

∅ Z∗8 Z8 0 0 0

x, y, z, t,
u, v

x2 Z∗5 ∗ Z2 Z5 ⊕ Z2 0 Z2 0

x, y, z, t, u x3 Z∗4 ∗ Z3 Z4 ⊕ Z3 0 Z3 0
x, y, z, t x4 Z∗3 ∗ Z4 Z3 ⊕ Z4 0 Z4 0

xyx−1y Z∗2 ∗ (Z n Z) Z3 ⊕ Z2 0 0 0
xyx−1y−1 Z∗2 ∗ Z2 Z4 Z 0 0
x2, y2 Z∗2 ∗ Z∗22 Z2 ⊕ Z2

2 0 Z2
2 0

x, y, z x5 Z∗2 ∗ Z5 Z2 ⊕ Z5 0 Z5 0
x2yxy−1 Z ∗K1 Z2 ⊕ Z3 0 0 0
x2yx−1y Z ∗K2 Z2 0 0 0
x2yx−1y−1 Z ∗ BS(1,2) Z2 0 0 0
x3, y2 Z ∗ Z2 ∗ Z3 Z⊕ Z2 ⊕ Z3 0 Z2 ⊕ Z3 0

x, y x6 Z ∗ Z6 Z⊕ Z6 0 Z6 0
x2yxy−2 K3 Z 0 0 0
x2yx−1y−2 K4 Z 0 0 0
x2yx−2y−1 BS(2,2) Z2 Z 0 0
x3yx−1y K5 Z⊕ Z2 0 0 0
x3yx−1y−1 BS(1,3) Z⊕ Z2 0 0 0
x3yxy−1 K6 Z⊕ Z4 0 0 0
x2yx2y−1 K7 Z⊕ Z4 0 0 0
x3y3 K8 Z⊕ Z3 0 0 0
x4, y2 Z2 ∗ Z4 Z2 ⊕ Z4 0 Z2 ⊕ Z4 0

xyx−1y−1, x2 Z× Z2 Z⊕ Z2 Z2 Z2 Z2

x3, y3 Z∗23 Z2
3 0 Z2

3 0
x x7 Z7 Z7 0 Z7 0

Table 4: The 25 groups of length 8
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generators relators groups H1 H2
H2n+1

n ≥ 1
H2n

n ≥ 2
x, y, z, t, u,
v, w, s, q

∅ Z∗9 Z9 0 0 0

x, y, z, t,
u, v, w

x2 Z∗6 ∗ Z2 Z6 ⊕ Z2 0 Z2 0

x, y, z, t,
u, v

x3 Z∗5 ∗ Z3 Z5 ⊕ Z3 0 Z3 0

x, y, z, t, u x4 Z∗4 ∗ Z4 Z4 ⊕ Z4 0 Z4 0
xyx−1y Z∗3 ∗ (Z n Z) Z4 ⊕ Z2 0 0 0
xyx−1y−1 Z∗3 ∗ Z2 Z5 Z 0 0
x2, y2 Z∗3 ∗ Z∗22 Z3 ⊕ Z2

2 0 Z2
2 0

x, y, z, t x5 Z∗3 ∗ Z5 Z3 ⊕ Z5 0 Z5 0
x2yxy−1 Z∗2 ∗K1 Z3 ⊕ Z3 0 0 0
x2yx−1y Z∗2 ∗K2 Z3 0 0 0
x2yx−1y−1 Z∗2 ∗ BS(1,2) Z3 0 0 0
x3, y2 Z∗2 ∗ Z2 ∗ Z3 Z2 ⊕ Z2 ⊕ Z3 0 Z2 ⊕ Z3 0

Table 5: The groups of length 9 with more than 3 generators
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gen. relators groups H1 H2
H2n+1

n ≥ 1
H2n

n ≥ 2
x, y, z x6 Z∗2 ∗ Z6 Z2 ⊕ Z6 0 Z6 0

one relator,
length 6,

not proper power
0 or Z 0 0

x4, y2 Z ∗ Z2 ∗ Z4 Z⊕ Z2 ⊕ Z4 0 Z2 ⊕ Z4 0
xyx−1y−1, x2 Z ∗ (Z× Z2) Z2 ⊕ Z2 Z2 Z2 Z2

xyx−1y−1, z2 Z2 ∗ Z2 Z2 ⊕ Z2 Z Z2 0
xyx−1y, z2 (Z n Z) ∗ Z2 Z⊕ Z2

2 0 Z2 0
x3, y3 Z ∗ Z∗23 Z⊕ Z2

3 0 Z2
3 0

x2, y2, z2 Z∗32 Z3
2 0 Z3

2 0
x, y x7 Z ∗ Z7 Z⊕ Z7 0 Z7 0

one relator,
length 7,

not proper power
0 0 0

x5, y2 Z2 ∗ Z5 Z2 ⊕ Z5 0 Z2 ⊕ Z5 0
x2yx−1y, y2 S3 Z2 0 Z6 or Z2 0
x4, y3 Z3 ∗ Z4 Z3 ⊕ Z4 0 Z3 ⊕ Z4 0

xyx−1y−1, x3 Z× Z3 Z⊕ Z3 Z3 Z3 Z3

xyx−1y, y3 Z3 n Z Z 0 0 or Z3 0 or Z3

x3y, y3 Z9 Z9 0 Z9 0
x x8 Z8 Z8 0 Z8 0

Table 6: The groups of length 9 with 1, 2 or 3 generators
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(ii) if q ≡ 1, 2 (mod 4),

Hq(G) ∼=
{

Z2 if n is even
0 if n is odd

Proof. We have H1(G) ∼= 〈x, y|xyx−1y, yn〉ab
∼= 〈x, y|y2, yn〉ab

∼= Z ⊕
〈y|y2, yn〉, and 〈y|y2, yn〉 ∼= Z2 if n is even, 0 if n is odd.

Suppose that q ≥ 2, and let us compute Hq(G) = Hq(G,Z). Let N =
{yk : k ∈ Zn} ∼= Zn and M = {xj : j ∈ Z} ∼= Z. The sets N and M are
subgroups of G, and N is a normal subgroup of G, but M is not a normal
subgroup of G if n ≥ 3. The group G is the semidirect product N n M of
groups N and M . We have G = {xjyk : j ∈ Z, k ∈ Zn}, with the product
given by (xjyk)(xiym) = xi+jy(−1)ik+m if j, i ∈ Z, k,m ∈ Zn. In particular, if
j ∈ Z and k ∈ Zn, we have x−jykxj = y(−1)jk.

We have an exact sequence of groups

0 −→ N −→ G −→ G/N −→ 0

with G/N = {xjN : j ∈ Z} ∼= Z. By the Lyndon-Hochschild-Serre theorem
(see e.g. [27, p. 661]), there is a first quadrant spectral sequence with

E2
p,r = Hp(G/N,Hr(N,Z)) =⇒ Hp+r(G,Z).

SinceG/N ∼= Z is free, we have, for all modulesA and all p ≥ 2, Hp(G/N,A) ∼=
0, so, for all p ≥ 2, E2

p,r
∼= 0. Then it is known [27, p. 642] that there is an

exact sequence

0 −→ E2
0,q −→ Hq(G,Z) −→ E2

1,q−1 −→ 0

We have Hq(N,Z) ∼= Hq(Zn,Z) ∼= 0 if q is even, q ≥ 2, so E2
0,q
∼= 0 if q is

even, q ≥ 2, and E2
1,q−1

∼= 0 if q is odd, q ≥ 3. Thus

Hq(G,Z) ∼=
{
E2

0,q = H0(G/N,Hq(N,Z)) if q is odd, q ≥ 3
E2

1,q−1 = H1(G/N,Hq−1(N,Z)) if q is even, q ≥ 2

where Hq(N,Z) ∼= Zn is a G/N -module for the action induced on Hq(N,Z)
by conjugation. The action by conjugation of xjN ∈ G/N on yk ∈ N is
given by (xjN) · yk = x−jykxj = y(−1)jk. In this case, it is known that the
action induced by conjugation by x is multiplication by (−1)i on H2i−1(N,Z)
[31, p. 191]. Thus, if q ≡ 3 (mod 4), G/N acts trivially on Hq(N,Z),
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and if q ≡ 1 (mod 4), G/N acts non-trivially. Since G/N ∼= Z, we have
Z(G/N) ∼= Z[x, x−1], and we will write additively Hq(N,Z) ∼= Zn. Then the
non-trivial action of P (x) ∈ Z[x, x−1] on k ∈ Zn is given by P (x)·k = P (−1)k
(Note that, for n = 2, G ∼= Z× Z2 and G/N acts trivially on Z2).

For the trivial action ofG/N on Zn, we haveH0(G/N,Zn) ∼= H1(G/N,Zn) ∼=
Zn, so Hq(G,Z) ∼= Zn if q ≡ 0, 3 (mod 4).

For the non-trivial action of G/N on Zn, we have, by lemmas A and B
below,

H0(G/N,Zn) ∼= H1(G/N,Zn) ∼=
{

Z2 if n is even
0 if n is odd

Lemma A. Let G/N act non-trivially on Zn, by (xlN) · k = (−1)lk. Then

H0(G/N,Zn) ∼=
{

Z2 if n is even
0 if n is odd

Proof. It is known that, for any group K and any ZK-module A, we have
H0(K,A) ∼= A/∆A, where ∆ is the fundamental ideal of ZK.

Here, H0(G/N,Zn) ∼= Zn/∆Zn, where ∆ = (x − 1)Z[x, x−1]. Then (x −
1)P (x) ∈ (x − 1)Z[x, x−1] acts on k ∈ Zn by (x − 1)P (x) · k = (−1 −
1)P (−1)k = −2P (−1)k, so ∆Zn = {−2k : k ∈ Zn}. We have

{−2k : k ∈ Zn} ∼=
{

Zn/2 if n is even
Zn if n is odd

and so we have

Zn/∆Zn
∼=
{

Z2 if n is even
0 if n is odd

Lemma B. Let G/N act non-trivially on Zn, by (xlN) · k = (−1)lk. Then

H1(G/N,Zn) ∼=
{

Z2 if n is even
0 if n is odd

Proof. It is known that, for any group K and any ZK-module A, we have
H1(K,A) ∼= ker β, where β : A ⊗K ∆ → A is defined by β(a ⊗K (g − 1)) =
(g − 1)a, if a ∈ A, g ∈ K [12].
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Here H1(G/N,Zn) ∼= ker β, where β : Zn ⊗G/N ∆→ Zn is defined by

β(k ⊗G/N (x− 1)P (x)) = (x− 1)P (x) · k = −2P (−1)k,

if k ∈ Zn, (x− 1)P (x) ∈ ∆. There is an isomorphism ψ : Zn ⊗G/N ∆→ Zn,
defined by

ψ(k ⊗G/N (x− 1)P (x)) = P (−1)k,

with inverse given by ψ−1(k) = k⊗G/N (x−1). This isomorphism maps ker β
onto ker(β ◦ ψ−1), and β ◦ ψ−1(k) = β(k ⊗G/N (x− 1)) = −2k, so

ker(β ◦ ψ−1) = {k ∈ Zn : −2k = 0} =

{
{0, n/2} if n is even
{0} if n is odd

and we are done. �

7 Lower bounds for bq(N)

Groups Zn have presentations 〈x1, . . . , xn|([xi, xj])1≤i<j≤n〉 of length n+4
(

n
2

)
=

2n2 − n, and Hq(Zn) ∼= Z(n
q), so

bq(Zn) = n(n− 1) · · · (n− q + 1)/q!

Thus we have the following proposition.

Proposition 7.1 For all q ≥ 2, all n ≥ 1,

bq(2n
2 − n) ≥ n(n− 1) · · · (n− q + 1)/q!

In particular, b3(15) ≥ 1, b4(28) ≥ 1.

We will see that it is interesting to get numbers nq such that bq(N) > N
if N ≥ nq. The following proposition achieves this task.

Proposition 7.2 For all q ≥ 3, let mq be defined by

n ≥ mq ⇐⇒ n(n− 1) · · · (n− q + 1)/q! ≥ 2(n+ 1)2 − (n+ 1),

and let nq = 2m2
q −mq. Then, for all N ≥ nq, bq(N) > N .
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Proof. Let N ≥ nq, and let n be such that 2n2−n ≤ N < 2(n+1)2−(n+1).
Then n ≥ mq, and bq(N) ≥ bq(2n

2−n) ≥ bq(Zn) = n(n−1) · · · (n−q+1)/q! ≥
2(n+ 1)2 − (n+ 1) > N . �

Corollary 7.3 We have

(i) b3(N) > N if N ≥ 561,

(ii) b4(N) > N if N ≥ 231,

(iii) b9(N) > N if N ≥ 325.

The lower bounds given above are not impressive, but better lower bounds
would require ingenious arguments. A referee suggested following the original
proof of Nabutovsky and Weinberger [25]. We begin with an abelian group
G with N independent generators and, by many effective embeddings, we get
the double suspension S2G such that H3(S

2G) ∼= H1(G) ∼= G, so b3(S
2G) ≥

N . By keeping track of the lengths of the presentations of the groups involved
in this construction, we can get an upper bound length(S2G) ≤ n, so we have
b3(n) ≥ b3(S

2G) ≥ N .

8 Prospects and conclusion

8.1 Computation of bq(10)

The list of groups of length 10 with more than two generators can be made
and does not provide groups with bq(G) > 0 if q ≥ 3. But the groups of
length 10 with two generators are numerous and the value of bq(10) for q ≥ 3
is an open problem.

8.2 Looking for groups G with large bq(G)

Only a thorough exploration of groups of length ≤ N can lead to the compu-
tation of bq(N). But guessing groups G with high bq(G) gives lower bounds
for bq(N). The search for such groups can be done with pencil and paper or
by computer. The practice of busy beaver competition has shown that com-
puter is more effective. For the value Σ(6) of the busy beaver function, for
instance, pencil and paper searches gave Σ(6) ≥ 42, while computer searches
gave Σ(6) ≥ 4.6× 101439 [23].
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There exists a software package that computes homology of groups. The
HAP package for the GAP system [9, 11] can compute the homology of many
finite groups and certain infinite groups. Unfortunately, it is not designed to
directly compute homology groups of infinite groups given by generators and
relations, which are the groups that are interesting for the present problem.

8.3 Still higher: the c function

For a group G, Nabutovsky and Weinberger [25] defined j(G) as the number
of homology groups of G with an infinite rank.

j(G) = card({q ∈ N : bq(G) =∞}).

Then they defined function c(N) as the maximum j(G) among finitely pre-
sented groups G of length ≤ N and finite j(G).

c(N) = max({j(G) : G finitely presented of length ≤ N, and j(G) <∞}).

They proved that function c grows as the fifth busy beaver function B5. As
we saw in Section 4, this makes sense even if no formal definition is given for
function B5. The results from Section 6 show that, for all groups of length
≤ 9 and all q ∈ N we have bq(G) <∞, so we have the following proposition.

Proposition 8.1 If 0 ≤ N ≤ 9, then c(N) = 0.

Stallings [30] gave a finitely presented group G of length ≤ 39, such that
b3(G) = ∞, and Bieri [4] stated that bq(G) < ∞ if q 6= 3, so j(G) = 1. We
can deduce the following lower bound: c(39) ≥ 1.

8.4 The biggest number ever written

Functions bq and c enable us to give candidates for the biggest number ever
written with a limited number of symbols, say eight symbols. Write fk(n)
for the iterate f(f(· · · f(n) · · ·)) k times. If f grows rapidly, and if f(n) > n
for all n ≥ n0, then k 7→ fk(n0) grows much more rapidly than f . So it is
valuable to look for numbers nq such that bq(N) > N for all N ≥ nq. We
saw in Section 7 that n9 = 325 is suitable. So b9

9

9 (99) is certainly a very
big number, possibly the biggest one that has ever been written with eight
symbols.
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We have currently no idea for the number m such that c(N) > N for all

N ≥ m. Are c9
9
(999

) or c9
99

(99) very big? And which is the biggest one? We
can suspect, as a referee does, that the latter one is much bigger than the
former one, and that both these numbers are much bigger than b9

9

9 (99), but
the proofs are still to be found.
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