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and IUFM de l’académie de Versailles

michel@logique.jussieu.fr

January 23, 2007

Abstract
The first-order logical theory Th(N, x + 1, F (x)) is proved to be

complete for the class ATIME-ALT(2O(n), O(n)) when F (x) = 2x, and
the same result holds for F (x) = cx, xc (c ∈ N, c ≥ 2), and F (x) =
tower of x powers of two. The difficult part is the upper bound, which
is obtained by using a bounded Ehrenfeucht-Fräıssé game.
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1 Introduction

The structures we consider in this article have the set of natural numbers as
universe, equality as unique basic relation, and some usual unary functions as
basic operations. So they cannot be said to be contrived examples of struc-
tures. However, few results are known about decidability and complexity of
the first-order theory of such structures.

On the one hand, Ferrante and Rackoff (1979) [6] proved that Th(N, =, x+
1) is PSPACE-complete, and the same result was proved for Th(N, =, 2x),
Th(N, =, x2), Th(N, =, 2x) by Michel (1992) [13].

∗Corresponding address: 59 rue du Cardinal Lemoine, 75005 Paris, France.
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On the other hand, it is easy to find unary functions f1, f2, f3, f4, defin-
able in 〈N, =, +,×〉, such that + and × are definable in 〈N, =, f1, f2, f3, f4〉,
and so Th(N, =, f1, f2, f3, f4) is undecidable. Indeed, if g : N2 → N is a defin-
able bijection, we take f1, f2 such that g(f1(x), f2(x)) = x, f1(g(x, y)) = x,
f2(g(x, y)) = y, and f3 = f1 + f2, f4 = f1f2. Then + and × can be defined
in 〈N, =, f1, f2, f3, f4〉 as follows.

x + y = z ⇐⇒ ∃t[(f1(t) = x) ∧ (f2(t) = y) ∧ (f3(t) = z)],

xy = z ⇐⇒ ∃t[(f1(t) = x) ∧ (f2(t) = y) ∧ (f4(t) = z)].

Moreover, Korec (2001) [10] claimed that function f4 is redundant if g(x, y) =
(x+y)(x+y +1)/2+x (his example 6.7), and gave also structures with only
two unary functions in which + and × can be defined (ex. 4(b)16, 5.13).

Between these extreme cases, some results are known about theories of
structures 〈N, =, x + 1, F (x)〉. Semenov (1984) [14] proved that Th(N, =
, +, 2x) is decidable (and Compton and Henson (1990) [3] proved that it
is not elementary recursive), so Th(N, =, x + 1, 2x) is decidable. Semenov
(1984) [14] proved also that Th(N,≤, x2) is decidable, so Th(N, =, x + 1, x2)
is decidable. In this paper, we prove that Th(N, =, x + 1, F (x)) is complete
for ATIME-ALT(2O(n), O(n)) if F (x) = 2x, and that this result can be easily
extended to F (x) = cx, xc (c ≥ 2) and F (x) = exp∞(x) (i.e., F (x) a tower
of powers of two).

As a related result, note that Thomas (1975) [16], improving Elgot and
Rabin (1966) [5], proved that the weak monadic second-order theory of
〈N, =, x + 1, F (x)〉 is undecidable if {a : F−1(a) infinite} is infinite, or if
F is strictly monotone and {a : F (a)+1 < F (a+1)} is infinite. So we know
that the weak monadic second-order theory of 〈N, =, x + 1, 2x〉 is undecid-
able. Michel (1992) [13] considered structures without equality, but with the
binary relation ⊥ of coprimality, and proved that Th(N,⊥,×, 2x, x2, 2x) is
in ATIME-ALT(2O(n), O(n)).

The paper is structured as follows. The main task is proving that Th(N, =
, x + 1, 2x) is in the complexity class ATIME-ALT(2O(n), n). The structure
〈N, =, x+1, 2x〉 is presented in Section 2 and the idea of the proof is given in
Section 3. Sections 4 to 8 are devoted to the proof, which needs many tech-
nical lemmas. Then we show in Section 9 how the proof can be extended to
theories Th(N, =, x + 1, F (x)) when F (x) = cx, xc or exp∞(x). These exten-
sions of the proof are straightforward, and we have preferred focusing on one
structure in the main body of the article, rather than adding more discussions
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and computations to an already lengthy proof. The lower bound is proved
in Section 10, and we conclude by giving prospects and open problems.

2 Preliminaries

2.1 Computational complexity

We use the complexity measure ATIME-ALT( · , · ), due to Berman (1980)
[2]. This measure, based on alternating Turing machines, is particularly well
suited to the study of logical theories. We give here only a brief description,
and refer to books such as Balcázar et al. (1990) [1] for precise definitions.

As for nondeterministic Turing machines, the configurations of an alter-
nating Turing machine are nodes of a computation tree, but the non-halting
nodes are now labelled as existential or universal. A computation of an al-
ternating Turing machine on an input x is accepting if there exists a finite
subtree of the computation tree, with one child out of each existential node,
all the children out of each universal node, and accepting halting leaves. An
alternating Turing machine M works in T (n) time and A(n) alternations if,
for all accepted input x of length n, there is an accepting computation subtree
of M on x of height T (n), such that there is at most A(n)− 1 alternations of
existential and universal configurations from the root to an accepting leaf. A
language L is in ATIME-ALT(T (n), A(n)) if there exists an alternating Tur-
ing machine accepting words in L in time T (n) and number of alternations
A(n). We set ATIME-ALT(2O(n), n) =

⋃
c>0 ATIME-ALT(2cn, n).

2.2 Logic

We refer to Ferrante and Rackoff (1979) [6] for precise logical definitions.
A vocabulary is a set V = {f1, . . . , fl, R1, . . . , Rm} of symbols for functions

fi and relations Rj. We will use mainly the vocabularies {=, f1, f2} and
{=, R1, R2}, where f1, f2 are symbols for unary functions and R1, R2 are
symbols for binary relations.

A formula over vocabulary V involves logical symbols ¬, ∨, ∧, ∃, ∀,
parentheses, formal variables v0, v1, . . . with subscripts written in binary, and
symbols from vocabulary V . The length of a formula is its length as a word
over the alphabet {¬,∨,∧,∃,∀, (, ), v, 0, 1, f1, . . . , fl, R1, . . . , Rm}, where v, 0,
1 are used for writing variables. The length of φ is denoted by |φ|. A sentence
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is a formula with no free variable. A sentence is in prenex normal form if it
is written as (Q1x1) . . . (Qkxk)φ(x1, . . . , xk), where Q1, . . . , Qk are quantifiers
and φ(x1, . . . , xk) is quantifier-free. A k-tuple (x1, . . . , xk) is also denoted by
x̄k.

A structure A = 〈A, f1, . . . , fl, R1, . . . , Rm〉 is made of a nonempty domain
A, functions fi and relations Rj. We often use the same letter to denote sym-
bols from vocabulary V and their interpretations as functions and relations
on A. If φ(x̄k) is a formula over vocabulary V with free variables x̄k, and
if āk ∈ Ak, then we write A |= φ(āk) if φ(āk) is true in A. The theory of a
structure A is the set of sentences true in A: Th(A) = {φ : A |= φ}. We
write Th(A, f1, . . . , fl, R1, . . . , Rm) for Th(〈A, f1, . . . , fl, R1, . . . , Rm〉).

2.3 The structure

We consider the structure 〈N, =, S, P 〉, where N = {0, 1, 2, . . .} and S, P are
the total functions defined by S(x) = x + 1 and P (x) = 2x (S for successor
and P for power). The partial functions S−1 and P−1 on N are defined by
S−1(x) = x − 1 and P−1(x) = log x, base two logarithm of x. The binary
relations RS and RP on N are defined by: RS(x, y) if S(x) = y, and RP (x, y)
if P (x) = y.

The segment [x, y] is the set {t ∈ N : x ≤ t ≤ y}.
A k-tuple of functions (f1, . . . , fk) ∈ {S, P, S−1, P−1}k is also denoted by

f̄k. We often identify the k-tuple f̄k = (f1, . . . , fk) with the partial function
fk ◦ fk−1 ◦ · · · ◦ f1.

We use the terminology of graph theory applied to the undirected graph
(N, E), where there is an edge between two numbers if one of them is the
image of the other one by S or P (This is the Gaifman’s graph [8] of the
structure). A walk from x to y of length k is a k + 1-tuple (u0, u1, . . . , uk)
such that u0 = x, uk = y, and, for all i ∈ [0, k − 1], we have RS(ui, ui+1) or
RS(ui+1, ui) or RP (ui, ui+1) or RP (ui+1, ui). A subwalk of this walk is a walk
(ui, . . . , uj) such that 0 ≤ i ≤ j ≤ k. Note that there is no walk of length
one from a number to itself. But such a walk can happen in other structures,
such as 〈N, =, x + 1, x2〉.

The k-tuple of functions f̄k = (f1, . . . , fk) is associated to a walk (u0, . . . , uk)
if, for all i ∈ [0, k − 1], we have fi+1(ui) = ui+1. Note that many k-tuples of
functions can happen to be associated to a given walk. A walk is unambigu-
ous if there is only one k-tuple of functions associated to this walk. Else this
walk is ambiguous. The following facts can be proved easily.
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Fact 2.1 A walk (u0, . . . , uk) is unambiguous if and only if, for all i ∈ [0, k−
1], (ui, ui+1) /∈ {(0, 1), (1, 0), (1, 2), (2, 1)}.

Fact 2.2 Every walk in N− {0, 1} is unambiguous.

A path is a walk with distinct vertices. A walk (u0, . . . , uk) is closed if
u0 = uk. A cycle is a walk (u0, . . . , uk) with k ≥ 3, u0, . . . , uk−1 distinct, and
u0 = uk. This cycle has length k. Note that, by definition, the length of a
cycle is always at least 3. The following fact can be proved easily.

Fact 2.3 (i) Up to a circular permutation, there is a unique cycle of length
3: (2, 3, 4, 2).

(ii) There is no cycle of length 4 or 5.

(iii) Up to a circular permutation, there is a unique cycle of length 6: (3, 4, 5, 6, 7, 8, 3).

A subset A of N is connected if, for all x, y ∈ A, there is a walk from
x to y in A. A subset A of N is regular if A is nonempty, connected, and
contains no ambiguous walk, no cycle, and no walk of length one from a
number to itself (This last condition, here an empty one, is necessary for a
structure such as 〈N, =, x + 1, x2〉). A subset of N which is not regular is
called singular. The following fact can be proved easily.

Fact 2.4 Let x, y be distinct numbers in a regular subset A of N. Then there
is a unique path from x to y in A.

Two subsets A and B of N are isomorphic, denoted A ∼= B, if the sub-
structures 〈A, =, RS|A , RP |A〉 and 〈B, =, RS|B , RP |B〉 are isomorphic, that is if
there is a bijective mapping σ : A → B such that, for all x, y ∈ A, RS(x, y)
iff RS(σ(x), σ(y)), and RP (x, y) iff RP (σ(x), σ(y)). The following facts can
be proved easily.

Fact 2.5 If A is a finite connected subset of N, and σ is an isomorphism
from A to A, then σ is the identity.

Fact 2.6 If σ1 : A ∼= B and σ2 : A ∼= B are isomorphisms from a finite
connected subset A of N into B, then σ1 = σ2.
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We define a distance d on N by d(x, x) = 0, and, if x 6= y, d(x, y) is the
length of a shortest walk from x to y (Note that this walk is not necessarily
unique). If x, k ∈ N, the ball centered at x of radius k is the closed ball
B(x, k) = {y ∈ N : d(x, y) ≤ k}. The following facts can be proved easily.

Fact 2.7 If d(x, y) = n, and x = u0, u1, . . . , un = y is a walk from x to y of
length n, then, if 0 ≤ i ≤ j ≤ n, we have d(ui, uj) = j − i.

Fact 2.8 Let x ∈ N. The ball of radius one B(x, 1) is regular if and only if
x ≥ 5 if and only if d(0, x) ≥ 4.

A tower of n powers of two is denoted by exp∞(n). Formally, exp∞ is
recursively defined by exp∞(0) = 1, and exp∞(k + 1) = 2exp∞(k). A near
inverse of exp∞ is log∞(n) = min{k ∈ N : exp∞(k) ≥ n}. The following fact
can be proved easily, by induction on d(0, x).

Fact 2.9 For all x ∈ N− {0, 1}, d(0, x) ≥ 1 + log∞(x).

The following fact follows easily from Fact 2.9.

Fact 2.10 For all n ∈ N, d(0, exp∞(n)) = n + 1.

3 Proof plan

The proof of Th(N, =, S, P ) ∈ ATIME–ALT(2O(n), n) rests on a bounded
Ehrenfeucht–Fräıssé game, as developped by Ferrante and Rackoff (1979) [6].
Informally, two k-tuples āk and b̄k in Nk belong to the same equivalence class
of the equivalence relation En

k if they cannot be distinguished by formulas of
quantifier depth at most n. Now, given āk and b̄k such that ākE

n+1
k b̄k, and a

new ak+1 ∈ N, the game consists in finding bk+1 ∈ N such that āk+1E
n
k+1b̄k+1.

Intuitively, if ak+1 is close to 0 or to some ai, we have no choice: bk+1 must
be close to 0 or to bi. The most difficult case arises when ak+1 is far enough
from 0 and ais. In this case we have to find bk+1 far enough from 0 and bis,
and with a neighborhood similar to the neighborhood of ak+1. The difference
between the classical Ehrenfeucht–Fräıssé game of Ehrenfeucht (1961) [4] and
Fräıssé (1954) [7] and the present bounded Ehrenfeucht–Fräıssé game is that
we need to find bk+1 as small as possible, in order to get the smallest possible
complexity. The length of the proof comes from the need to control the size
of bk+1.
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Sections 4, 5 and 6 are devoted to the analysis of this most difficult case.
To be far enough from 0 means to be the center of a big enough regular
ball, and Section 4 gives a sufficient condition for a ball to be regular. To
have similar neighborhoods means to be in two isomorphic regular balls, and
Section 5 gives a sufficient condition for two regular balls to be isomorphic.
Section 6 ends this analysis by providing, in each isomorphism class of regular
balls, a ball with small enough center.

The aim of bounded Ehrenfeucht–Fräıssé games is to make easy the deci-
sion procedure of a prenex sentence by bounding its quantifiers. This is done
in Section 7. Finally, in Section 8, we give the decision procedure. The input
is a sentence over the vocabulary {=, S, P}. It is transformed into a sentence
in prenex normal form over the relational vocabulary {=, RS, RP}. Then
we can bound its quantifiers according to the results of Section 7. Alterna-
tions of existential and universal states are used for handling quantifiers, and
atomic formulas are shown to be decidable in small time.

4 A sufficient condition for a ball to be reg-

ular

In this section, we prove that a ball B(x, k) is regular if d(0, x) ≥ 2k +2. We
do this by proving that a singular ball contains a small enough cycle, and
that a cycle contains a small enough element, giving a short path from 0 to
the center of the ball.

Thus, we first prove the two following lemmas.

Lemma 4.1 Let C be a cycle of length n ≥ 7 in N. Then there is a u ∈ C
such that u ≤ (n− 1)/2.

Proof. Let C be a cycle in N of length n ≥ 7, and let z = max C. The
numbers next to z in C are distinct, and can’t be z + 1 or 2z by maximality
of z. So they are z−1 and log z. We can suppose C oriented in the direction
. . . , z − 1, z, log z, . . .. Let p be the greatest integer such that z − p, z − p +
1, . . . , z − 1, z, log z is a subwalk of C.

Case 1: z − p = log z.
Then C is the cycle (log z, log z + 1, . . . , z − 1, z, log z), of length n =

z − log z + 1.
If log z ≤ 3, then log z ≤ (n− 1)/2 because n ≥ 7.
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If log z ≥ 4, then log z ≤ (z − log z)/2 = (n− 1)/2.
Thus there is a u = log z in C such that u ≤ (n− 1)/2

Case 2: z − p > log z.
Then the member of C just before z − p can’t be z − p− 1 by definition

of p, can’t be 2z−p by maximality of z, and can’t be z − p + 1 which is
just after z − p. So this member is log(z − p), and C contains the subwalk
(log(z − p), z − p, z − p + 1, . . . , z − 1, z, log z), of length p + 2.

Since log(z−p) ≤ log z−1, we have p ≥ z/2, so C has length n ≥ p+3 ≥
z/2 + 3, which yields log(z − p) ≤ log(z/2) ≤ log(n− 3) ≤ (n− 1)/2. Thus
there is a u = log(z − p) in C such that u ≤ (n− 1)/2. �

Lemma 4.2 Let B(x, k) be a singular ball, B(x, k) ⊆ N−{0, 1}. Then there
is a cycle in B(x, k) which has length at most 2k + 1.

Proof. Let B(x, k) be a singular ball that does not contain 0 and 1. By Fact
2.2, B(x, k) does not contain an ambiguous walk, so B(x, k) contains a cycle
C. Let a be a member of C with maximal distance h from x: d(x, a) = h ≤ k.
Consider b and b′ next to a in C. Their distances from x are either h− 1 or
h.

Case 1: Both b and b′ are at distance h− 1 from x.
Then let x = u0, u1, . . . , uh−1 = b and x = v0, v1, . . . , vh−1 = b′ be paths

from x to b and b′ in B(x, k), and i = max{j ∈ [0, h− 1] : ui = vj}. Cycle C
has length at least 3, so b 6= b′ and i < h−1. We have uj 6= vj for all j ∈ [i+
1, h− 1]. Note that, for all j ∈ [0, h− 1], d(x, uj) = d(x, vj) = j, so, if j 6= j′,
then uj 6= vj′ . Thus, the closed walk (a, uh−1, . . . , ui+1, ui, vi+1, . . . , vh−1, a) is
a cycle, of length 2(h− i) ≤ 2k + 1.

Case 2: One of b or b′, for example b, is at distance h from x.
Then, as in Case 1, we consider the paths x = u0, u1, . . . , uh = a from x

to a, and x = v0, v1, . . . , vh = b from x to b, and define i = max{j ∈ [0, h] :
uj = vj} < h. Then the closed walk (a, uh−1, . . . , ui+1, ui, vi+1, . . . , vh−1, b, a)
is a cycle, of length 2(h− i) + 1 ≤ 2k + 1. �

Note that the upper bound given by Lemma 4.2 is achieved in the singular
balls B(22m−1 + m, 22m−1 −m), m ≥ 1, by the cycle (2m, 2m + 1, . . . , 22m −
1, 22m, 2m).

Proposition 4.3 Let x, k ∈ N. If d(0, x) ≥ 2k + 2, then the ball B(x, k) is
regular.
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Proof. If k = 1 and d(0, x) ≥ 4, then B(x, k) is regular by Fact 2.8.
If k ≥ 2, we suppose that B(x, k) is singular and we will prove that

in this case B(x, k) ∩ [0, k] 6= ∅. Then there is a y ∈ B(x, k) ∩ [0, k], and
d(0, x) ≤ d(0, y) + d(y, x) ≤ k + k = 2k, which proves the proposition.

So, let B(x, k) be a singular ball of radius k ≥ 2.
If B(x, k) ∩ {0, 1} 6= ∅, then B(x, k) ∩ [0, k] 6= ∅.
If B(x, k) ⊆ N−{0, 1}, then, by Lemma 4.2, there is a cycle C in B(x, k)

of length n ≤ 2k + 1. By Fact 2.3, C can’t have length 4 or 5. If C has
length n = 3, then C is (2, 3, 4, 2), and 2 ∈ B(x, k) ∩ [0, k]. If C has length
n = 6 ≤ 2k +1, then C is (3, 4, 5, 6, 7, 8, 3), and k ≥ 3, so 3 ∈ B(x, k)∩ [0, k].

At last, if C has length n ≥ 7, then, by Lemma 4.1, there is a u ∈ C such
that u ≤ (n− 1)/2 ≤ k, and u ∈ B(x, k) ∩ [0, k]. �

5 A sufficient condition for two regular balls

to be isomorphic

In this section, we prove that the isomorphism classes of regular balls are
classified by the tuples of functions associated to the paths connecting the
centers of the balls to their minimums. This needs a long analysis of the
paths connecting two numbers (Lemma 5.1), and particularly two members
of a regular ball (Lemmas 5.2, 5.3, 5.4 and 5.5). Moreover, Lemmas 5.1, 5.2
and 5.4 will be used again in the next section.

Lemma 5.1 Let x, y, t ∈ N, such that x < y and 2t ≤ y < 2t+1. Then a
shortest path from x to y belongs to at least one of the three following types:

(i) s-path: [x, y], of length y − x,

(ii) t-path: a shortest path from x to t, followed by [2t, y], of length d(x, t)+
y − 2t + 1,

(iii) t+1-path: a shortest path from x to t+1, followed by [y, 2t+1] (covered
from 2t+1 to y), of length d(x, t + 1) + 2t+1 − y + 1.

Proof. If t ∈ {0, 1}, it is easy to see that the shortest paths from x to y are
s-paths, so we suppose y ≥ 4.

Let C be a shortest path from x to y: x = u0, u1, . . . , un = y, of length
n = d(x, y), and let z = max C = max{ui : i ∈ [0, n]}.
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Case 1: z = y.
We consider un−1. By maximality of z, un−1 ∈ {log y, y − 1}, and, if

un−1 = log y, then C is a t-path.
We consider now the case un−1 = y − 1. The set {k ∈ N : (∀i ∈

[0, k])un−i = y − i} is a nonempty bounded set, so has a maximum m ≥ 1,
and un−m = y −m.

If m = n, then C is an s-path.
If m < n, we consider un−m−1. We know that un−m−1 ∈ {un−m−1, un−m+

1, 2un−m , log un−m}, and it is easy to check that only un−m−1 = log un−m is
possible. Since un−m < y < 2t+1, we have un−m−1 < t + 1, so there is an a ∈
[0, t] such that un−m−1 = t− a. Then y−m = un−m = 2t−a, so m = y− 2t−a.
We have un−m = 2t−a ≤ 2t so, by definition of m, 2t = y− (y−2t) = un−y+2t .

Then, by Fact 2.7: d(t− a, 2t) = d(un−m−1, un−y+2t) = n− y + 2t − (n−
m− 1) = 2t − 2t−a + 1.

The path [t− a, t] ∪ {2t} is a path from t− a to 2t of length a + 1, thus
2t − 2t−a + 1 ≤ a + 1, which is possible only if a = 1, because t ≥ 2.

Thus, un−m−1 = t, un−m = 2t, and C is a t-path.

Case 2: y < z.
Let k ∈ [1, n − 1], such that z = uk, and consider uk−1 and uk+1. By

maximality of z, uk−1, uk+1 ∈ {z − 1, log z}.
Subcase 2.1: uk−1 = z − 1 and uk+1 = log z.

We prove that this subcase is impossible. The set {j ∈ N : (∀i ∈
[0, j])uk−i = z − i} is a nonempty bounded set, so has a maximum m ≥ 1.
We have uk−m 6= x because x < y < z, so we can consider uk−m−1.

We know that uk−m−1 ∈ {uk−m − 1, uk−m + 1, 2uk−m , log uk−m}. Now,
uk−m−1 = uk−m − 1 is impossible by definition of m, uk−m−1 = uk−m + 1 is
impossible because uk−m + 1 = uk−m+1, and uk−m−1 = 2uk−m is impossible,
for then z −m = uk−m < 2uk−m = uk−m−1 ≤ z = max C, and there exists a
j ∈ [0, m] such that uk−m−1 = z − j = uk−j.

The last case is uk−m−1 = log uk−m, and we now prove that it is impossi-
ble.

Let a = log z− uk−m−1. Then z−m = uk−m = 2uk−m−1 = 2log z−a = z/2a,
so m = z(1 − 1/2a). By Fact 2.7, d(log z − a, log z) = d(uk−m−1, uk+1) =
k + 1− (k−m− 1) = m + 2 = z(1− 1/2a) + 2. But the path [log z− a, log z]
is a path from log z − a to log z of length a, so z(1 − 1/2a) + 2 ≤ a, which
cannot hold, since z ≥ 2a.

Subcase 2.2: uk−1 = log z and uk+1 = z − 1.
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The set {j ∈ N : (∀i ∈ [0, j])uk+i = z − i} is a nonempty bounded set, so
has a maximum m ≥ 1. An analysis parallel to the one in Subcase 2.1 shows
that uk+m 6= y is impossible, thus uk+m = y.

Let a = log z − t. We have a ≥ 1, so y < 2t+1 ≤ z. By Fact 2.7, [y, z]
is a shortest path from y to z, so d(2t+1, z) = z − 2t+1 = 2t+a − 2t+1. But
{2t+1}∪ [t+1, t+ a]∪{2t+a} is a path from 2t+1 to 2t+a = z, of length a+1,
so a+1 ≥ d(2t+1, z) = 2t+a−2t+1 ≥ 4(2a−2), because t ≥ 2. This inequality
is possible only if a = 1. Thus, log z = t + 1 and C is a t + 1-path. �

Lemma 5.2 Let B(x, k) be a regular ball, m = min B(x, k), and let f̄k be
the k-tuple of functions associated to the path from m to x. Then f̄k ∈
{S, S−1, P}k.

Proof. Note that, since the ball B(x, k) is regular, there is a unique path
from m = min B(x, k) to x in B(x, k), this path has length k, and there is a
unique k-tuple of functions f̄k associated to this path.

We prove the lemma by induction on k. If k = 1, then either m = x− 1
or m = log x.

Suppose that the result is true for all l < k, and let B(x, k) be a regular
ball, m = min B(x, k), and let f̄k be the k-tuple associated to the path from
m to x. Then f̄k−1 is the (k − 1)-tuple associated to the path from m to
y = f−1

k (x). Since B(y, k − 1) ⊆ B(x, k), the ball B(y, k − 1) is regular, and
m = min B(y, k − 1). By induction hypothesis, f̄k−1 ∈ {S, S−1, P}k−1.

Now, we prove that fk ∈ {S, S−1, P}. Let t ∈ N such that 2t ≤ x < 2t−1.
By Lemma 5.1, the path from m to x is an s-path, a t-path or a t + 1-path.
If it is an s-path, then fk = S. If it is a t-path, then fk = S if x > 2t and
fk = P if x = 2t. If it is a t + 1-path, then fk = S−1. So fk ∈ {S, S−1, P}
and f̄k ∈ {S, S−1, P}k. �

Lemma 5.3 Let B(x, k) be a regular ball, let [a, b] ⊆ B(x, k), and let u, v ∈
N, such that u < v and 2u, 2v ∈ [a, b]. Then v = u + 1.

Proof. Let B(x, k) be a regular ball, [a, b] ⊆ B(x, k), and u < v, such that
a ≤ 2u < 2v ≤ b.

(1) The ball B(x, k) is regular, thus we have u ≥ 2, v ≥ 3, and conse-
quently 2v − 2u ≥ 2v − 2v−1 = 2v−1 ≥ v + 1 > v− u + 2. Thus the path from
2u to 2v of length v − u + 2, via u and v, is shorter than the path [2u, 2v].
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(2) Now, let y ∈ [a, b] with a minimal distance h from x among the
numbers in [a, b]. By unicity of paths in a regular ball, y is unique, and the
paths from y to t ∈ [a, y] and t′ ∈ [y, b] are respectively [t, y] and [y, t′].

If y ≤ 2u, then by part (1) above, the path [y, 2u]∪ [u, v]∪{2v} from y to
2v is shorter than the path [y, 2v]. Now, if w ∈ [u, v], then d(x, w) ≤ d(x, y)+
d(y, w) ≤ d(x, y) + d(y, 2v). By Fact 2.7, d(x, y) + d(y, 2v) = d(x, 2v) ≤ k, so
w ∈ B(x, k). We have proved that [u, v] ⊆ B(x, k), so B(x, k) contains the
cycle formed by [u, v] and [2u, 2v], which is impossible.

A similar reasoning proves that y ≥ 2v is impossible, so we have 2u < y <
2v.

(3) Suppose there is a number w such that u < w < v. Then 2u < 2w <
2v, so either y ≤ 2w < 2v, or 2u < 2w ≤ y. But the same reasoning as in part
(2) above shows that this is impossible. Thus, we have v = u + 1. �

Lemma 5.4 Let B(x, k) be a regular ball, and let f̄n be an n-tuple of func-
tions associated to a path of length n ≥ 2 in B(x, k), such that there is an
i ∈ [1, n] such that fi = P . Then, for any j ∈ [i + 1, n], we have fj 6= P−1.

Proof. By contradiction. Suppose there is a path u0, u1, . . . , un of length
n ≥ 2 in a regular ball B(x, k), such that the associated n-tuple of functions
f̄n contains both P and P−1 at i and j > i, that is, fi = P , fj = P−1.
Then we define j0 = min{j ∈ [1, n] : (∃i < j)fi = P and fj = P−1}, and
i0 = max{i ∈ [1, n] : i < j0 and fi = P}. Then ui0 = 2ui0

−1, uj0−1 = 2uj0 ,
and, for any h ∈ [i0, j0 − 2], uh+1 = T (uh), where T = S or T = S−1. We
can suppose T = S, or change the orientation of the path. Then we can
applied Lemma 5.3. Because [ui0 , uj0−1] ⊆ B(x, k), ui0−1 < uj0 , and 2ui0

−1,
2uj0 ∈ [ui0 , uj0−1], we have uj0 = ui0−1 + 1, and we get a cycle in a regular
ball. �

Lemma 5.5 Let B(x, k) be a regular ball, m = min B(x, k), and y ∈ B(x, k).
Let f̄k be associated to the path from x to m, and let ḡl be associated to the
path from x to y in B(x, k). If q ∈ [1, l] is such that gq = P−1, then ḡq = f̄q.

Proof. Let f̄k and ḡl be associated to the paths from x to m = min B(x, k)
and y ∈ B(x, k) respectively. Then l ≤ k. If ḡi = f̄i for any i ∈ [1, l], then
ḡq = f̄q. Otherwise, let j be the smallest i ∈ [0, l − 1] such that ḡi+1 6= f̄i+1,
and consider the walk from m to y obtained by concatenating the path from
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m to u and the path from u to y in B(x, k). Since B(x, k) is regular, this
walk is a path. Let h̄p (p = k + l− 2j) be the p-tuple of functions associated
to this path. That is, hi = f−1

k−i+1 if 1 ≤ i ≤ k − j, and hi = g2j−k+i if
k − j + 1 ≤ i ≤ k + l − 2j.

We will show that, if gq = P−1 for a q ∈ [1, l], then it is impossible that
q ≥ j + 1 (so q ≤ j and ḡq = f̄q).

Suppose that q ≥ j + 1. We have hk−2j+q = gq = P−1, so, by Lemma
5.4, the his are distinct from P for i ∈ [1, k − 2j + q]. For i ∈ [1, k − j],
these his are f−1

k−i+1s, which, by Lemma 5.2, are in {S, S−1, P}. Thus, for
i ∈ [1, k − j], the his are in {S, S−1}. Since m = min B(x, k), hi = S for all
i ∈ [1, k − j]. Now, we consider the gis for i ∈ [j + 1, q], which are also his
for i ∈ [k − j + 1, k + q − 2j]. Since gq = P−1, these functions are distinct
from P by Lemma 5.4. Before the first P−1, these functions are in {S, S−1}.
Since gj+1 6= fj+1 = S−1, these functions are Ss before the first P−1, which
is obtained for hr. But then, the path from m to h̄r−1(x) is [m, h̄r−1(x)],
and h̄r(x) = P−1(h̄r−1(x)) ≥ m = min B(x, r), and h̄r(x) < h̄r−1(x). Thus
h̄r(x) ∈ [m, h̄r−1(x)], and h̄r is associated to a walk from m to y which can’t
be a path. �

Proposition 5.6 Let B(x, k) and B(x′, k′) be two regular balls, such that the
same k-tuple of functions is associated to the path from x to m = min B(x, k)
and to the path from x′ to m′ = min B(x′, k′). Then B(x, k) is isomorphic to
B(x′, k′).

Proof. Let f̄k be the k-tuple of functions associated to both paths from x
to m and from x′ to m′. We define σ from B(x, k) to B(x′, k′) the following
way. If y ∈ B(x, k) and ḡl is the l-tuple of functions associated to the path
from x to y, we define σ(y) = ḡl(x

′). That is, σ(ḡl(x)) = ḡl(x
′).

(1) σ is well defined.
The l-tuple ḡl is unique because B(x, k) is regular. We have to prove that

ḡl(x
′) is defined. This is true if and only if, for any i ∈ [1, l], if gi = P−1,

then ḡi(x
′) is defined. But then, by Lemma 5.5, ḡi = f̄i, and ḡi(x

′) = f̄i(x
′)

is defined.

(2) σ is one-to-one.
Let y1, y2 ∈ B(x, k), y1 6= y2, such that y1 = ḡl1(x), y2 = h̄l2(x) in the

regular ball B(x, k). Then ḡl1 6= h̄l2 , so, in the regular ball B(x′, k′), we have
ḡl1(x

′) 6= h̄l2(x
′), that is σ(y1) 6= σ(y2).
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(3) σ is a bijection.
The balls B(x, k) and B(x′, k′) have symmetric positions in the statement

of Proposition 5.6, so a map τ from B(x′, k′) to B(x, k) can be defined, which
is well defined and one-to-one by the same reasoning as in parts (1) and (2).
So B(x, k) and B(x′, k′) have the same number of elements, and σ and τ are
bijections because they are one-to-one maps between sets with same number
of elements.

(4) σ is an isomorphism.
Let y and z = g(y) be in B(x, k), where g ∈ {S, S−1, P, P−1}. We can

suppose that the path from x to y does not contain z (otherwise, we swap y
and z and replace g by g−1). Let ḡl−1 be the (l−1)-tuple of functions associ-
ated to the path from x to y, and let ḡl be the l-tuple of functions associated
to the path from x to z (so gl = g). Then σ(g(y)) = σ(z) = σ(ḡl(x)) =
ḡl(x

′) = g(ḡl−1(x
′)) = g(σ(ḡl−1(x))) = g(σ(y)). So σ is an isomorphism.

�

6 End of analysis of the most difficult case

In this section, we prove that we can find, in the isomorphism class of a
regular ball, a ball with a small enough center. The minimum of this ball is
a power of two, which allow us to control the distance of its center from 0
(Lemma 6.2). The results of this section use all the machinery developped
in Sections 4 and 5.

Lemma 6.1 If t, x ∈ N, and x ≤ 2t, then any shortest path from x to 2t is
an s-path (i.e., is [x, 2t]), or a t-path (i.e., goes via t).

Proof. If t = 0 and x ≤ 2t, then the shortest path from x to 2t is [x, 2t].
If t ≥ 1, then, by Lemma 5.1, any shortest path from x to 2t is an

s-path, a t-path, or a t + 1-path. If it is a t + 1-path, then d(x, 2t) =
d(x, t + 1) + 2t+1 − 2t + 1 = d(x, t + 1) + 2t + 1.

But d(x, 2t) ≤ d(x, t + 1) + d(t + 1, t) + d(t, 2t) = d(x, t + 1) + 2, so
2t + 1 ≤ 2, which is impossible. �

Lemma 6.2 Let B(x, k) be a regular ball, and let m = min B(x, k) be a
power of 2. Then d(0, m) + k − 1 ≤ d(0, x) ≤ d(0, m) + k.
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Proof. Let B(x, k) be a regular ball with k ≥ 1. If m = min B(x, k) is a power
of 2, then m ≥ 4. We have readily d(0, x) ≤ d(0, m) + d(m, x) ≤ d(0, m) + k,
so we have to prove that d(0, x) ≥ d(0, m) + k − 1.

Let C1 be the unique path from x to m, and let C2 be a path from x
to 0 of length d(0, x), so C2 is the path x = u0, u1, . . . , ud(0,x) = 0. The set
{i ∈ [0, d(0, x)] : ui ∈ C1} is nonempty because it contains 0, so it has a
maximum l. Let y = ul. Then y is on both C1 and C2, so, by Fact 2.7,
d(0, x) = d(0, y) + d(y, x) and d(m, x) = d(m, y) + d(y, x).

If y = m, then the walk x = u0, . . . , ul = m is a path from x to m in
the regular ball B(x, k), so it is C1, which is then a subpath of C2. Thus,
d(0, x) = d(0, m) + d(m, x) = d(0, m) + k.

We suppose now on that y 6= m. Since y ∈ B(x, k), we have m < y, by
definition of m. We consider the subpath C ′

1 of C1, from y to m, and the
subpath C ′

2 of C2, from y to 0. By definition of y, C ′
1∩C ′

2 = {y}. By Lemma
5.1, C ′

1 and C ′
2 (when covered, respectively, from m to y and from 0 to y)

are s-paths, t-paths, or t + 1-paths, but do not belong to the same type. Let
t ∈ N such that 2t ≤ y < 2t+1. Since m ≥ 4, we have y ≥ m + 1 ≥ 5, and
t ≥ 2. Note that C ′

2 can’t be an s-path, because [0, z] is a shortest path from
0 to z if and only if z ≤ 3.

Case 1: y = 2t.
We prove that this is impossible.
By Lemma 6.1, any shortest path from 0 to y = 2t is an s-path or a

t-path. But C ′
2 can’t be an s-path, so it is a t-path. Similarly, by Lemma

6.1, any shortest path from m to y = 2t is an s-path or a t-path. But C ′
1

can’t belong to the same type as C ′
2, so C ′

1 is an s-path, that is, C ′
1 = [m, y].

But k = d(x, m) = d(x, y)+ d(y, m) ≥ d(x, y)+ 1, so d(x, y) ≤ k− 1. On the
other hand, d(y, t) = d(2t, t) = 1, so d(x, t) ≤ d(x, y)+d(y, t) ≤ k−1+1 = k.
Thus, t ∈ B(x, k) and m ≤ t. So t ∈ [m, y] = C ′

1 and t ∈ C ′
1 ∩ C ′

2, which is
impossible.

Case 2: 2t < y < 2t+1.
By definition of y, one of the path C ′

1 and C ′
2 begins with y, y + 1, . . .,

and the other one by y, y − 1, . . ., so there are three possible cases.

Subcase 2.1: C ′
1 is a t-path and C ′

2 is a t + 1-path.
If we suppose d(x, t+1) ≤ k, then the path from x to t+1 via [y, 2t+1] is in

B(x, k), and the regular ball B(x, k) contains the cycle t+1, t, 2t, . . . , 2t+1, t+
1, which is impossible. Thus d(x, t + 1) ≥ k + 1. We have d(x, t + 1) ≤
d(x, t) + d(t, t + 1) = d(x, t) + 1, so d(x, t) ≥ k. Thus, k = d(x, m) =
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d(x, t) + d(t,m) ≥ k + d(t,m), so d(t,m) = 0, t = m, and d(x, t) = k,
d(x, t+1) = k+1. Thus, d(0, x) = d(0, t+1)+d(t+1, x) = d(0, t+1)+k+1,
and d(0, m) = d(0, t) ≤ d(0, t+1)+d(t+1, t) = d(0, x)−k−1+1 = d(0, x)−k.
We get what we wanted: d(0, x) ≥ d(0, m) + k.

Subcase 2.2: C ′
1 is a t + 1-path and C ′

2 is a t-path.
We argue as in Subcase 2.1, swapping t and t + 1.

Subcase 2.3: C ′
1 is an s-path and C ′

2 is a t + 1-path.
Then the shortest path from y to m is [m, y], of length d(y, m) = y −m.

If we suppose m ≤ 2t−1, then the path [m, 2t−1]∪ {t− 1, t} ∪ [2t, y] is a path
from m to y of length y − m − 2t−1 + 3 ≥ d(y, m) = y − m, so 2t−1 ≤ 3,
t = 2, m ≤ 2t−1 ≤ 2 and B(x, k) is not regular. Thus, m > 2t−1. Since m is
a power of 2, m ≥ 2t. But 2t < y < 2t+1, so m = 2t. Then t+1 < 2t = m, so
t + 1 is not in B(x, k) and d(x, t + 1) ≥ k + 1. Since t + 1 is on C2, d(0, x) =
d(0, t + 1) + d(t + 1, x). Thus, d(0, m) ≤ d(0, t + 1) + d(t + 1, t) + d(t,m) =
d(0, x)− d(t + 1, x) + 2 ≤ d(0, x)− (k + 1) + 2, and d(0, x) ≥ d(0, m) + k− 1.
�

Proposition 6.3 Let B(x, k) be a regular ball, m = min B(x, k), x = f̄k(m).
Let l ≥ 3k + 1 and y = f̄k(exp∞(l)). Then

(i) B(y, k) is regular,

(ii) exp∞(l) = min B(y, k),

(iii) B(y, k) is isomorphic to B(x, k),

(iv) k + l ≤ d(0, y) ≤ k + l + 1.

Proof. We can suppose k ≥ 1. Note that, in the hypotheses of this proposi-
tion, f̄k(exp∞(l)) is defined, because, by Lemma 5.2, fi ∈ {S, S−1, P} for all
i ∈ [1, k], and exp∞(l) ≥ exp∞(3k + 1) ≥ k.

(i) We first prove that B(y, k) is regular. Since f̄k defines a path from
exp∞(l) to y of length k, we have d(y, exp∞(l)) ≤ k. By Fact 2.10, we
have d(0, exp∞(l)) = l + 1 ≥ 3k + 2. Thus, 3k + 2 ≤ d(0, exp∞(l)) ≤
d(0, y) + d(y, exp∞(l)) ≤ d(0, y) + k, so d(0, y) ≥ 2k + 2. By Proposition 4.3,
B(y, k) is regular.

(ii) Let exp∞(l) = v. We have y = f̄k(v) and we want to prove that
v = min B(y, k). Let N = min B(y, k), and let ḡk be the k-tuple of functions
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associated to the path from y to N . We saw that there is no P−1 in f̄k and,
by Lemma 5.2, there is no P in ḡk.

Suppose v 6= N , and let u be the point after which the paths from y to
N and from y to v are distinct.

Suppose that there is a P in the path from v to u. Then, by Lemma
5.4, there is no P−1 from u to N . Thus there are only S and S−1 from u to
N . Since N = min B(x, k), there are only S−1, and the path from u to N is
[N, u]. Let w be on the path from u to v, such that there is no P−1 from u
to w and a P−1 just after w. Since there is no P from u to w, there are only
S or S−1. Thus the path from N to w via u is [N, w]. But P−1(w) is on the
path from u to v, so is in B(x, k), and P−1(w) ≥ N . Since P−1(w) < w, we
have P−1(w) ∈ [N, w], which is impossible.

Thus, there is no P from v to u. Since there is no P−1, there are only S or
S−1. Thus the path from v to u is [v, u]. Since the paths from u to N and from
u to v are distinct, there is a P−1just after u on the path from u to N . So let t
be such that u = 2t. We have k = d(y, v) = d(y, u)+d(u, v) = d(y, u)+u−v.

If u−v ≥ 2, then d(y, t−1) ≤ d(y, u)+d(u, t)+d(t, t−1) = d(y, u)+2 =
k− (u− v) + 2 ≤ k, so t− 1 ∈ B(y, k), and the regular ball B(y, k) contains
the cycle t− 1, t, u, u− 1, . . . , 2t−1, t− 1, which is impossible.

Thus u − v ≤ 1. But u and v are both powers of 2 in the regular ball
B(x, k) , which is impossible.

Thus v = N = min B(y, k).

(iii) Comes from (i) and (ii) by Proposition 5.6.

(iv) Since B(x, k) is regular and exp∞(l) is a power of 2, Lemma 6.2
yields: d(0, exp∞(l)) + k − 1 ≤ d(0, y) ≤ d(0, exp∞(l)) + k. By Fact 2.10,
d(0, exp∞(l)) = l + 1, so k + l ≤ d(0, y) ≤ k + l + 1 �

7 How to bound quantifiers

The following Proposition 7.1 encompasses the bounded Ehrenfeucht–Fräıssé
game argument. It is implicit in Ferrante and Rackoff (1979) [6], more explicit
in Lo (1988) [12], and fully stated in Michel (1992) [13]. It gives conditions
that allow to reduce the satisfaction by a relational structure of a prenex
sentence to the satisfaction by this relational structure of a sentence with
bounded quantifiers.

Using Proposition 4.3 and 6.3, we prove in Proposition 7.2 and Lemma
7.3 that these conditions are fulfilled. Then Theorem 7.4 follows, on which
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the decision procedure of Section 8 rests.

Proposition 7.1 Let A = 〈A, R1, . . . , Rl〉 be a structure, where R1, . . . , Rl

are relations on A.
Let En

k , n ∈ N, k ∈ N− {0}, be a family of equivalence relations on Ak.
Let ‖ · ‖ : A → N. If x ∈ A and m ∈ N, then x � m means that ‖x‖ ≤ m.
Let H : N3 → N, and µ ∈ N.
Suppose that the following conditions holds:

(i) For all k ∈ N − {0}, m ≥ µ, āk, b̄k ∈ Ak, if ākE
n+1
k b̄k and, for all

i ∈ [1, k], ‖bi‖ ≤ m, then, for any ak+1 ∈ A, there is a bk+1 ∈ A such
that āk+1E

n
k+1b̄k+1 and ‖bk+1‖ ≤ H(n, k, m).

(ii) For all k ∈ N− {0}, āk, b̄k ∈ Ak, if ākE
0
k b̄k, then āk and b̄k satisfy the

same atomic formulas.

Let k ∈ N− {0}, and let (Q1x1) . . . (Qkxk)F (x̄k) be a sentence in prenex
normal form, with F (x̄k) quantifier-free.

Let (m0, m1, . . . ,mk) ∈ Nk+1 such that µ ≤ m0 ≤ m1 ≤ · · · ≤ mk and, for
all i ∈ [1, k], mi ≥ H(k − i, i − 1, mi−1). Then A |= (Q1x1) . . . (Qkxk)F (x̄k)
if and only if A |= (Q1x1 � m1) . . . (Qkxk � mk)F (x̄k). �

We specify now the definitions of the relations En
k that we need here.

If a, b, k ∈ N, such that d(a, b) ≤ k, we denote by N(a, b, k) the common
neighborhood of a and b, that is, N(a, b, k) = B(a, k) ∪ B(b, k) = {x ∈ N :
d(a, x) ≤ k or d(b, x) ≤ k}.

When we write σ : N(a, b, k) ∼= N(a′, b′, k), we suppose that isomorphism
σ, which is unique by Fact 2.6, satisfies σ(a) = a′ and σ(b) = b′.

Let a1, a2, b1, b2 ∈ N and n ∈ N. We write (a1, a2) ≡n (b1, b2) if

• either d(a1, a2) > 2n and d(b1, b2) > 2n,

• or d(a1, a2) = d(b1, b2) ≤ 2n, and N(a1, a2, 2
n) ∼= N(b1, b2, 2

n).

Note that, if (a1, a2) ≡n (b1, b2) and m ≤ n, then (a1, a2) ≡m (b1, b2).

Let n, k ∈ N, k ≥ 1 and āk, b̄k ∈ Nk. Then ākE
n
k b̄k if

(i) For all i ∈ [1, k], (0, ai) ≡n+2 (0, bi).

(ii) For all i ∈ [1, k], B(ai, 2
n) ∼= B(bi, 2

n).
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(iii) For all i, j ∈ [1, k], i 6= j implies (ai, aj) ≡n (bi, bj).

Note that, if ākE
n
k b̄k, then (0, ai) ≡2 (0, bi), so ai = bi if d(0, ai) ≤ 4.

If x ∈ N, we define ‖x‖ = d(0, x), and we denote x � k if ‖x‖ ≤ k.

Proposition 7.2 Let k, n ∈ N, k ≥ 1, m ≥ 1, āk, b̄k ∈ Nk, such that
ākE

n+1
k b̄k and, for all i ∈ [1, k], ‖bi‖ = d(0, bi) ≤ m, and let ak+1 ∈ N.
Then there exists bk+1 ∈ N such that āk+1E

n
k+1b̄k+1 and ‖bk+1‖ = d(0, bk+1) ≤

2n+2 + m + 1.

Proof. The hypothesis ākE
n+1
k b̄k means that

(H1) For all i ∈ [1, k], either d(0, ai) > 2n+3 and d(0, bi) > 2n+3, or ai = bi.

(H2) For all i ∈ [1, k], B(ai, 2
n+1) ∼= B(bi, 2

n+1).

(H3) For all i, j ∈ [1, k], i 6= j, either d(ai, aj) > 2n+1 and d(bi, bj) > 2n+1,
or d(ai, aj) = d(bi, bj) ≤ 2n+1 and N(ai, aj, 2

n+1) ∼= N(bi, bj, 2
n+1).

Then ak+1 is given, and we are looking for bk+1 such that āk+1E
n
k+1b̄k+1,

that is, such that (H1), (H2) and (H3) above are satisfied, and such that,
moreover, we have

(C1) Either d(0, ak+1) > 2n+2 and d(0, bk+1) > 2n+2, or ak+1 = bk+1.

(C2) B(ak+1, 2
n) ∼= B(bk+1, 2

n).

(C3) For all i ∈ [1, k], either d(ai, ak+1) > 2n and d(bi, bk+1) > 2n, or
d(ai, ak+1) = d(bi, bk+1) ≤ 2n and N(ai, ak+1, 2

n) ∼= N(bi, bk+1, 2
n).

Case 1: d(0, ak+1) ≤ 2n+2.
Then we set bk+1 = ak+1. Conditions (C1) and (C2) are satisfied. For

Condition (C3), let i ∈ [1, k].

Subcase 1.1: d(0, ai) ≤ 2n+3.
Then, by (H1), bi = ai, so Condition (C3) is satisfied.

Subcase 1.2: d(0, ai) > 2n+3.
Then, by (H1), d(0, bi) > 2n+3. We show that d(ai, ak+1) > 2n and

d(bi, bk+1) > 2n.
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We have d(ai, ak+1) ≥ d(0, ai) − d(0, ak+1) > 2n+3 − 2n+2 > 2n, and
d(bi, bk+1) ≥ d(0, bi) − d(0, bk+1) = d(0, bi) − d(0, ak+1) > 2n+3 − 2n+2 =
2n+1 > 2n.

Case 2: d(0, ak+1) > 2n+2 and there is an h ∈ [1, k] such that ak+1 ∈
B(ah, 2

n).
Then, by (H2), there is an isomorphism σ : B(ah, 2

n+1) → B(bh, 2
n+1),

and we set bk+1 = σ(ak+1).
Condition (C1) is satisfied, that is d(0, bk+1) > 2n+2, because, otherwise, if

d(0, bk+1) ≤ 2n+2, we get d(0, bh) ≤ d(0, bk+1)+d(bk+1, bh) ≤ 2n+2+2n ≤ 2n+3,
so by (H1), ah = bh, and by Fact 2.5, σ is the identity on B(ah, 2

n+1). Thus
bk+1 = ak+1, and d(0, ak+1) ≤ 2n+2, contradicting the hypothesis.

To show Condition (C2), we want an isomorphism τ : B(ak+1, 2
n) →

B(bk+1, 2
n). We set τ = σ|B(ak+1,2n), which is defined because B(ak+1, 2

n) ⊆
B(ah, 2

n+1).
For Condition (C3), let i ∈ [1, k]. If i = h, then σ|N(ah,ak+1,2n) is an

isomorphism from N(ah, ak+1, 2
n) to N(bh, bk+1, 2

n).
Suppose i 6= h.

Subcase 2.1: d(ai, ah) > 2n+1.
Then, by (H3), d(bi, bh) > 2n+1, so d(ai, ak+1) ≥ d(ai, ah)− d(ah, ak+1) >

2n+1 − 2n = 2n, and d(bi, bk+1) ≥ d(bi, bh) − d(bh, bk+1) > 2n+1 − 2n = 2n.
Condition (C3) is satisfied.

Subcase 2.2: d(ai, ah) ≤ 2n+1.
Then, by (H3), d(bi, bh) ≤ 2n+1 and there is an isomorphism τ from

N(ai, ah, 2
n+1) to N(bi, bh, 2

n+1). Now, τ |B(ah,2n+1) is an isomorphism from
B(ah, 2

n+1) to B(bh, 2
n+1), so by Fact 2.6, τ |B(ah,2n+1) = σ. Isomorphism τ

is an extension of σ. In particular, τ(ak+1) = bk+1. Isomorphism τ preserves
distances, so d(ai, ak+1) = d(bi, bk+1). Then either d(ai, ak+1) = d(bi, bk+1) >
2k+1, or d(ai, ak+1) = d(bi, bk+1) ≤ 2k+1, and τ |N(ai,ak+1,2n) is an isomorphism
from N(ai, ak+1, 2

n) into N(bi, bk+1, 2
n), so Condition (C3) is satisfied.

Case 3: d(0, ak+1) > 2n+2 and for all i ∈ [1, k], d(ai, ak+1) > 2n.
This is the most difficult case, for which the machinery of the previous

sections was developed. We have d(0, ak+1) ≥ 2n+2 + 1 ≥ 2.2n + 2, so, by
Proposition 4.3, B(ak+1, 2

n) is a regular ball. Let M = min B(ak+1, 2
n), and

let f̄2n be defined by f̄2n(M) = ak+1. We set bk+1 = f̄2n(exp∞(m+3.2n)). We
have m+3.2n ≥ 3.2n +1 because m ≥ 1, so the hypotheses of Proposition 6.3
are satisfied. Thus, we get B(ak+1, 2

n) ∼= B(bk+1, 2
n), and 2n + m + 3.2n ≤

d(0, bk+1) ≤ 2n + m + 3.2n + 1, that is 2n+2 + m ≤ d(0, bk+1) ≤ 2n+2 + m + 1.
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Then Conditions (C1) and (C2) are satisfied, and Condition (C3) is satisfied
because d(bi, bk+1) > 2n, since otherwise 2n+2 + m ≤ d(0, bk+1) ≤ d(0, bi) +
d(bi, bk+1) ≤ m + 2n, which cannot holds.

Upper bound on ‖bk+1‖:
Case 1: d(0, bk+1) ≤ 2n+2.
Case 2: we have d(bk, bk+1) ≤ 2n, so d(0, bk+1) ≤ d(0, bk) + d(bk, bk+1) ≤

m + 2n.
Case 3: d(0, bk+1) ≤ 2n+2 + m + 1.
In all cases, we get ‖bk+1‖ = d(0, bk+1) ≤ 2n+2 + m + 1. �

Lemma 7.3 Let āk, b̄k ∈ N (k ≥ 1). If ākE
0
k b̄k, then āk and b̄k satisfy the

same atomic formulas.

Proof. By definition of E0
k , if ākE

0
k b̄k, we have:

(i) For all i ∈ [1, k], (0, ai) ≡2 (0, bi), that is, either d(0, ai) > 4 and
d(0, bi) > 4, or ai = bi.

(ii) For all i ∈ [1, k], B(ai, 1) ∼= B(bi, 1).

(iii) For all i, j ∈ [1, k], i 6= j, we have (ai, aj) ≡0 (bi, bj), that is, ei-
ther d(ai, aj) > 1 and d(bi, bj) > 1, or d(ai, aj) = d(bi, bj) = 1 and
N(ai, aj, 1) ∼= N(bi, bj, 1).

Thus, if ai = aj, then bi = bj, and if R(ai, aj), with R ∈ {RS, RP}, then
d(ai, aj) = 1, so d(bi, bj) = 1 and N(ai, aj, 1) ∼= N(bi, bj, 1), so we have
R(bi, bj). �

Theorem 7.4 Let (Q1x1) . . . (Qkxk)F (x̄k) be a sentence in prenex normal
form over the vocabulary {=, RS, RP}, with F (x̄k) quantifier-free. For all
i ∈ [1, k], let mi = 2k+2 − 2k−i+2 + i + 1.

Then
〈N, =, RS, RP 〉 |= (Q1x1) . . . (Qkxk)F (x̄k)

if and only if

〈N, =, RS, RP 〉 |= (Q1x1 � m1) . . . (Qkxk � mk)F (x̄k).

Proof. By Proposition 7.2 and Lemma 7.3, the hypotheses of Proposition 7.1
are satisfied, with ‖b‖ = d(0, b), µ = 1, H(n, k, m) = 2n+2 + m + 1. We set
m0 = µ = 1, and for i ∈ [1, k], mi = H(k − i, i − 1, mi−1). By induction on
i, we get easily mi = 2k+2 − 2k−i+2 + i + 1. �
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8 The decision procedure

We saw in the previous section that Proposition 7.1 applies to relational
structures, and Theorem 7.4 applies to sentences in prenex normal form.
Thus, first we have to transform an arbitrary sentence over a functional vo-
cabulary into a sentence in prenex normal form over a relational vocabulary.
This transformation will increase the length polynomially, so using a reduc-
tion, such as polynomial time many-one reduction for example, would waste
precision. It is better to insert this transformation at the beginning of the
decision procedure. So we present this transformation in the following form,
which may have an independent interest.

Proposition 8.1 There exists a function Ψ, computable in deterministic
polynomial time, which, on a sentence φ on the vocabulary {=, f1, . . . , fk},
where f1, . . . , fk are symbols for unary functions, returns a sentence Ψ(φ)
on the vocabulary {=, R1, . . . , Rk}, where R1, . . . , Rk are symbols for binary
relations, and which verifies the following conditions.

(i) Ψ(φ) is in prenex normal form.

(ii) Ψ(φ) has at most 2|φ| quantifiers.

(iii) Ψ(φ) has at most |φ| quantifiers alternations.

(iv) If fi is interpretated by f̃i : N → N, and Ri by R̃i ⊆ N× N, such that,
for all i ∈ [1, k] and all a, b ∈ N, f̃i(a) = b if and only if R̃i(a, b), then
〈N, =, f̃1, . . . , f̃k〉 |= φ if and only if 〈N, =, R̃1, . . . , R̃k〉 |= Ψ(φ).

Proof. The standard way to convert a sentence φ into prenex normal form
consists in moving quantifiers to the beginning of the sentence after renaming
variables. Ferrante and Rackoff (1979) [6], page 23, show that this routine
takes polynomial time, leaves unchanged the number of quantifiers, and yields
a sentence φ1 of length O(|φ| log |φ|). We need to make precise what happens.

Let q be the number of quantifiers in φ, and let r be the number of
occurrences of a functional symbol f1, . . . , or fk in φ . Then we have q + r ≤
|φ|. The sentence φ1 obtained by the standard transformation has same
number q of quantifiers, and same number r of functional symbols as φ. Let
φ1 = (Q1x1) . . . (Qqxq)F1(x̄q), in prenex normal form, F1(x̄q) being quantifier-
free. The number of quantifiers alternations in φ1 is at most max(0, q − 1).
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Then, we eliminate one by one the occurrences of a functional symbol fi

in F1(x̄q), by replacing them by Ri, according to the following recursive
procedure.

If x, x′ are already existing variables, t1, t2 are terms that are not vari-
ables, and y, y′ are new variables, then

(a) x′ = fi(x) and fi(x) = x′ are replaced by Ri(x, x′),

(b) x = fi(t1) and fi(t1) = x are replaced by (∃y)(y = t1 ∧Ri(y, x)),

(c) t1 = fi(x) and fi(x) = t1 are replaced by (∃y)(y = t1 ∧Ri(x, y)),

(d) t2 = fi(t1) and fi(t1) = t2 are replaced by (∃y)(∃y′)(y = t1 ∧ y′ =
t2 ∧Ri(y, y′)).

Each replacement increases the length of the sentence by a constant, plus the
length of new variables. There are r replacements, so the number of added
quantifiers is at most 2r, and the new variables are at most xq+1, . . . , xq+2r.
Each replacement is made in linear time, so r replacements are made in
polynomial time.

Let φ2 = (Q1x1) . . . (Qqxq)F2(x̄q) be the sentence obtained after the r
replacements. Let us transform F2(x̄q) in prenex normal form. We do not
need to rename variables xq+1, . . . , xq+2r, because each of them appears only
once. Moreover, in formula F2(x̄q), quantifiers coming from distinct atomic
formulas (that is formulas t1 = t2, where t1 and t2 are terms) are indepen-
dent from each others, and those coming from the same atomic formula are
existential ones, so all these quantifiers can be put together in the end of the
prefix:

• as (∃u1) . . . (∃ul)(∀v1) . . . (∀vm) if Qq = ∃,

• as (∀v1) . . . (∀vm)(∃u1) . . . (∃ul) if Qq = ∀.

Then only one quantifiers alternation is added.
The achieved sentence Ψ(φ) satisfies the conditions of the proposition. It

has at most q+2r ≤ 2(q+r) ≤ 2|φ| quantifiers, and at most max(0, q−1)+1 =
max(1, q) ≤ |φ| quantifiers alternations. Note that |Ψ(φ)| = O(|φ|(log |φ|)2),
but we do not need this result. �

Lemma 8.2 Let x ∈ N, and let f̄n be an n-tuple of functions associated to
a shortest path from 0 to x. Then f̄n ∈ {S, S−1, P}n, that is no fi is a P−1.
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Proof. The lemma is proved by induction on n = d(0, x). If n = 1, then
x = S(0) or x = P (0). Suppose the lemma proved for all u ∈ N such that
d(0, u) ≤ n − 1, and let x ∈ N such that d(0, x) = n. Let C be a shortest
path of length n from 0 to x and let f̄n be an n-tuple of functions associated
to C. By Lemma 5.1, three cases can occur.

Case 1: C is an s-path, that is C = [0, x]. Then f̄n = Sn ∈ {S, S−1, P}n.

Case 2: C is a t-path, that is, if 2t ≤ x < 2t+1, C is made of a shortest path C ′

from 0 to t, followed by [2t, x]. If k = d(0, t), then f̄k is a k-tuple of functions
associated to C ′, and k < n, so, by induction hypothesis, f̄k ∈ {S, S−1, P}k.
Then f̄n = Sx−2t ◦ P ◦ f̄k, so f̄n ∈ {S, S−1, P}n.

Case 3: C is a t + 1-path, that is, if 2t ≤ x < 2t+1, C is made of a shortest
path C ′ from 0 to t + 1, followed by [x, 2t+1], covered from 2t+1 to x. If
k = d(0, t + 1), then f̄k is a k-tuple of functions associated to C ′, and k < n,
so, by induction hypothesis, f̄k ∈ {S, S−1, P}k. Then f̄n = (S−1)2t+1−x◦P◦f̄k,
so f̄n ∈ {S, S−1, P}n. �

Note that, in the previous lemma, there can be more than one shortest
paths from 0 to x, and more than one n-tuples of functions associated to the
same shortest path from 0 to x.

Proposition 8.3 Deciding, on input f̄p = Snh◦P◦Snh−1◦P◦· · ·◦Sn1◦P◦Sn0,
with n0, . . . , nh ∈ Z, whether f̄p(0) is defined, can be done in deterministic
time polynomial in log p.

Proof. Let
f̄p = Snh ◦ P ◦ Snh−1 ◦ P ◦ · · · ◦ Sn1 ◦ P ◦ Sn0 ,

with n0, . . . nh ∈ Z, and the conventions: Sn = (S−1)−n if n < 0, and S0 =
Id. Because f̄p contains no P−1, f̄p(0) is defined if and only if, for all i ∈ [1, p],
f̄i(0) ≥ 0. Let u0 = Sn0(0) and, for all j ∈ [1, h], uj = Snj ◦ P (uj−1) =
nj + 2uj−1 . Then uj is defined if and only if uj−1 is defined and uj ≥ 0. We

have p = h +
∑h

j=0 |nj|, so, for all j ∈ [0, h], nj ≥ −p. Note that, for all

integers x ≥ 1, we have 2(log x)2+1 ≥ x+(log x)2 +1, so, if uj−1 ≥ (log p)2 +1,
then uj = nj + 2uj−1 ≥ nj + 2(log p)2+1 ≥ nj + p + (log p)2 + 1 ≥ (log p)2 + 1,
and, in particular, uj is defined because it is positive.

Thus, we get the following procedure to verify that f̄p(0) is defined: com-
pute u0, u1, . . ., until we reach one of the three following cases:

(i) uj < 0: return f̄p(0) undefined.
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(ii) uj ≥ (log p)2 + 1: return f̄p(0) defined.

(iii) j = h and uh ≥ 0: return f̄p(0) defined.

In these computations, numbers are less than p + 2(log p)2 = 2O((log p)2), so
they have a length polynomial in log p. Thus, these computations are done
in time polynomial in log p. �

The following proposition clears up a surprising fact: even if terms with
stacks of P s appear in the sentence to be decided, leading to threateningly
high numbers, only small numbers have to be handled during the decision
procedure.

Proposition 8.4 Let n ∈ N − {0}, and let f̄n be an n-tuple of functions,
such that:

(i) For all i ∈ [1, n− 1], fi+1 6= f−1
i .

(ii) f̄n(0) = 0.

Then, for all i ∈ [1, n], f̄i(0) ≤ 2n.

Proof. No n-tuple f̄n satisfies Hypotheses (i) and (ii) for n = 1 and n = 3,
and the 2-tuples (S, P−1) and (P, S−1) that satisfy these hypotheses also
satisfy the conclusion. So, from now on, we suppose n ≥ 4.

Let m ∈ [1, n] such that f̄m(0) = max{f̄i(0) : i ∈ [1, n]}. We have to
prove that f̄m(0) ≤ 2n. If f̄m(0) ≤ 8, then f̄m(0) ≤ 8 ≤ 2n, because n ≥ 4.
So we can suppose f̄m(0) > 8. Moreover, if k ≤ 3, then f̄k(0) and f̄n−k(0)
are in {0, 1, 2, 3, 4}, so we have 4 ≤ m ≤ n− 4 and n ≥ 8.

By definition of m, we have fm ∈ {S, P} and fm+1 ∈ {S−1, P−1}. So, by
Hypothesis (i), (fm, fm+1) = (S, P−1) or (fm, fm+1) = (P, S−1). In the second
case, we can consider the n-tuple f̄−1

n , which satisfies the same hypotheses
as f̄n. So, from now on, we suppose fm = S and fm+1 = P−1.

Let x = f̄m(0). Since f̄m−1(0) = x− 1 and f̄m+1(0) = log x, we know that
x is a power of 2. But x = f̄m(0) > 8, so x ≥ 16, and log x ≥ 4. We have to
prove that x ≤ 2n.

The set {j ∈ [1, m] : (∀i ∈ [j, m])fi = S} contains m, so is not empty.
Let l be its minimum. If l = 1, then f̄m(0) = Sm(0) = m ≤ n − 4 ≤ 2n. If
l = 2, then f̄m(0) = Sm−1 ◦P (0) = m ≤ 2n. Thus, from now on, we suppose
l ≥ 3.
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We have x = f̄l−1(0) + m − l + 1. If f̄l−1(0) ≤ 1, then x ≤ m − l + 2 ≤
m− 1 ≤ n− 5 ≤ 2n, so, from now on, we suppose f̄l−1(0) ≥ 2.

Case 1: f̄l−1(0) ≤ f̄m+1(0) = log x.
Then there exists k ∈ [l − 1, m − 1] such that f̄k(0) = log x, and so

f̄k(0) = log x, log x + 1, . . . , x − 1, x, log x = f̄m+1(0) is a cycle of length
x− log x + 1. So x− log x + 1 ≤ n, and x ≤ 2(x− log x + 1) ≤ 2n.

Case 2: f̄l−1(0) > f̄m+1(0) = log x.
Since fl = S, we have fl−1 6= S−1 by Hypothesis (i), fl−1 6= S by definition

of l, and fl−1 6= P−1, because otherwise f̄l−2(0) = 2f̄l−1(0) > 2f̄m+1(0) = f̄m(0),
contradicting the definition of m.

Thus, fl−1 = P , and f̄l−2(0) = log f̄l−1(0), f̄l−1(0), f̄l−1(0) + 1, . . . ,f̄m(0),
f̄m+1(0) = log x is a path of length x − f̄l−1(0) + 2. So x − f̄l−1(0) + 2 ≤ n.
But f̄l−2(0) = log f̄l−1(0) ≤ log x − 1, so f̄l−1(0) ≤ 2log x−1 = x/2, and
x/2 = x−x/2 ≤ x− f̄l−1(0) ≤ x− f̄l−1(0)+2 ≤ n, so we have x ≤ 2n. �

Theorem 8.5 Th(N, =, S, P ) ∈ ATIME-ALT(2O(n), n).

Proof. Let φ be a sentence of length n over the vocabulary {=, S, P}. By
Proposition 8.1, φ can be transformed, in deterministic polynomial time, into
a sentence (Q1x1) . . . (Qkxk)F (x̄k) over the vocabulary {=, RS, RP}, such
that F (x̄k) is quantifier-free, k ≤ 2n, |F (x̄k)| ≤ s(n) for a polynomial s, and
there is at most n alternations of quantifiers.

By Theorem 7.4,

〈N, =, RS, RP 〉 |= (Q1x1) . . . (Qkxk)F (x̄k)

if and only if

〈N, =, RS, RP 〉 |= (Q1x1 � m1) . . . (Qkxk � mk)F (x̄k),

where mi = 2k+2 − 2k−i+2 + i + 1 ≤ mk = 2O(n).
We need a procedure which produces numbers ai � mi, for all i ∈ [1, k],

existentially if Qi = ∃, universally if Qi = ∀, and then decides F (āk).
Numbers ai � mi are produced by writing them as ai = f̄p(0), for a p-

tuple f̄p of functions, with p ≤ mi. By Lemma 8.2, f̄p can be chosen to be
in the form

f̄p = Snh ◦ P ◦ Snh−1 ◦ P ◦ · · · ◦ Sn1 ◦ P ◦ Sn0 ,
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with n0, . . . nh ∈ Z, and the conventions: Sn = (S−1)−n if n < 0, and
S0 = Id.

By Proposition 8.3, we can verify that f̄p(0) is defined in deterministic
time polynomial in log p. Since p ≤ mk = 2O(n), this verification is polyno-
mial in n.

When we get āk ∈ N such that, for all i ∈ [1, k], ai � mi, we need
a procedure to decide F (āk), which is a Boolean formula over the atomic
formulas RS(ai, aj), RP (ai, aj) and ai = aj. Let f̄p, ḡq be tuples of functions
such that ai = f̄p(0), aj = ḡq(0), and p ≤ mi, q ≤ mj. The atomic formulas
above can be written respectively: ḡq(0) = S ◦ f̄p(0), ḡq(0) = P ◦ f̄p(0) and
ḡq(0) = f̄p(0), which can also be written f̄−1

p ◦ S−1 ◦ ḡq(0) = 0, f̄−1
p ◦ P−1 ◦

ḡq(0) = 0, f̄−1
p ◦ ḡq(0) = 0. The occurrences of two consecutive functions

inverse of each other can be cancelled, so we have to decide h̄r(0) = 0, with,
for all i ∈ N, hi+1 6= h−1

i , and r ≤ p + q + 1 ≤ mi + mj + 1 ≤ 2mk + 1. If this
formula is true, then the hypotheses of Proposition 8.4 are satisfied, so, for all
i ∈ [1, r], h̄i(0) ≤ 2r ≤ 4mk + 2. Thus, when h̄1(0), . . . , h̄r(0) are computed,
if one of these numbers exceeds 4mk + 2, we can stop the computation and
be sure that h̄r(0) = 0 is false. Hence the following decision procedure.

Decision procedure:

1. Write a tuple f̄pi
∈ {S, S−1, P}pi of length pi ≤ mi, for all i ∈ [1, k],

• in an existential state if Qi = ∃,
• in a universal state if Qi = ∀.

Verify that f̄pi
(0) is defined. If f̄pi

(0) is undefined, stops in a rejecting
state if Qi = ∃ and in an accepting state if Qi = ∀, in order to discard
this computation branch.

We get ai ∈ N, written as f̄pi
(0), such that ‖ai‖ ≤ mi for all i ∈ [1, k].

2. Consider F (āk). This is a Boolean formula over atomic formulas RS(ai, aj),
RP (ai, aj), ai = aj. Write each atomic formula as h̄r(0) = 0, with, for
all i ∈ [1, r − 1], hi+1 6= h−1

i , and r ≤ 2mk + 1.

3. For each formula h̄r(0) = 0, compute h̄1(0), h̄2(0), . . ., and:

• If one of these numbers is undefined, because it is negative or
logarithm of a number which is not a power of 2, stop computing
them and return: h̄r(0) = 0 false.
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• If one of these numbers exceeds 4mk + 2, stop computing them
and return: h̄r(0) = 0 false.

• Else, compute h̄r(0) and return the truth value of h̄r(0) = 0.

4. Compute the truth value of the Boolean formula F (āk).

Computing time:

(a) Time to write ai = f̄pi
(0) for all i ∈ [1, k].

We have pi ≤ mi ≤ mk = 2O(n), and we can verified that f̄p(0) is
defined in deterministic polynomial time so the total time is 2O(n).

(b) Time to compute the truth value of an atomic formula h̄r(0) = 0.

Computations are done on numbers at most 4mk + 2 = 2O(n), thus in
time polynomial in O(n), and there are at most r ≤ 2mk + 1 = 2O(n)

such computations, so the total time is nO(1)2O(n) = 2O(n).

(c) Time to compute the truth value of F (āk).

Writing an atomic formula as h̄r(0) = 0 is done in time O(2O(n)) =
2O(n). There are at most s(n) atomic formulas. When the truth values
of all atomic formulas are known, the truth value of F (āk) can be
computed in time q(n), for a polynomial q.

Thus the total time is 2O(n).
Alternations of existential and universal states are used only according

to alternations of quantifiers Qi, and there are at most n such alternations.
So Th(N, =, S, P ) ∈ ATIME-ALT(2O(n), n). �

9 Extension to other functions

Theorem 8.5, that is, Th(N, =, S, P ) ∈ ATIME-ALT(2O(n), n), and its proof
can be extended to other functions than P (x) = 2x.

9.1 Extension to Th(N, =, x + 1, cx)

We did not directly study the structures 〈N, =, x + 1, cx〉, with c ∈ N, c ≥
2, because it would have added, to an already burdensome proof, another
parameter, and discussions according to this parameter.

28



But it is easy to extend the results from Sections 2–8 to these structures.
Facts 2.1, 2.3 and 2.8 must be adapted. For Fact 2.10, we define exp∞(k+1) =
cexp∞(k). Statements remain true, 2x being replaced by cx, and proofs are
easily modified, for example by replacing base two logarithms by base c
logarithms.

9.2 Extension to Th(N, =, x + 1, xc)

The statements of facts, lemmas, propositions and theorems in Sections 2–8
remain true for the structure 〈N, =, x + 1, xc〉, with c ∈ N, c ≥ 2, 2x being
replaced by xc, with the following exceptions.

• Facts 2.1 and 2.3 must be adapted, which can be done easily.

• In Fact 2.9, d(0, x) ≥ 1 + log∞(x) for all x ≥ 2 must be replaced by
d(0, x) ≥ c + logc logc x for all x ≥ c.

• In Fact 2.10, d(0, exp∞(n)) = n + 1 for all n ∈ N must be replaced by
d(0, (c + 1)cn−c

) = n + 1 for all n ≥ c.

• In Lemma 4.1, the better hypothesis n ≥ 5 can be taken.

• In Lemma 6.2, the hypothesis “m is a power of 2” must be replaced by
“m is a cth power”.

• In Proposition 6.3, exp∞(l) must be replaced by (c + 1)cl−c
.

• In Proposition 8.4, the upper bound f̄i(0) ≤ 2n is false and must be
replaced by the weaker one f̄i(0) ≤ ((n− 1)/2)c.

The proofs of the results from Sections 4–8 can be adapted easily, the main
differences being handling small numbers and the following special cases.

• The proof of Proposition 8.3 is modified as follows. Because (x+1)c ≥
2x + 1, we have, if uj−1 ≥ p + 1, then uj = nj + uc

j−1 ≥ nj + (p + 1)c ≥
nj + 2p + 1 ≥ p + 1, so u0, u1, . . . are computed until uj ≥ p + 1. In
these computations, numbers are less than p + pc, so their lengths are
O(log p), and the time is polynomial in log p.

• In the proof of Theorem 8.5, when Proposition 8.4 is used, the bound
h̄i(0) ≤ 2r ≤ 4mk + 2 is replaced by the weaker bound h̄i(0) ≤ ((r −
1)/2)c ≤ mc

k. But mk = 2O(n), so we still get mc
k = 2O(n).
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9.3 Extension to Th(N, =, x + 1, exp∞(x))

The statements of the results from Sections 4–8 remain true for the structure
〈N, =, x + 1, exp∞(x)〉, 2x being replaced by exp∞(x), with the following
exceptions.

• Fact 2.3 can be adapted easily.

• We define exp∗∞ by exp∗∞(0) = 1 and exp∗∞(n + 1) = exp∞(exp∗∞(n)),
and we define log∗∞(n) = min{k ∈ N : exp∗∞(k) ≥ n}. Then we replace
log∞(x) by log∗∞(x) in Fact 2.9, and exp∞(n) by exp∗∞(n) in Fact 2.10.

• In Lemma 4.1, the better hypothesis n ≥ 5 can be taken.

• In Lemma 6.2, the hypothesis “m is a power of 2” must be replaced by
“m is a tower of powers of 2”.

• In Lemma 6.3, exp∞(l) must be replaced by exp∗∞(l).

The proofs of the results from Sections 4–8 can be adapted easily. The
proof of Proposition 8.3 is modified as follows. Because, for all x ≥ 0,
exp∞(log∞(x) + 1) ≥ x + log∞(x) + 1, we have, if uj−1 ≥ log∞(p) + 1, then
uj = nj + exp∞(uj−1) ≥ nj + exp∞(log∞(p) + 1) ≥ nj + p + log∞(p) + 1 ≥
log∞(p) + 1, so u0, u1, . . . are computed until uj ≥ log∞(p) + 1. In these
computations, numbers are less than p + exp∞(log∞(p)), but exp∞(log∞(p))
can be as large as 2p−1, so a predefined bound on computation time must be
set in order to keep it polynomial in log p.

10 Lower bound of complexity

We give a lower bound that matches the upper bound ATIME-ALT(2O(n), O(n)),
by proving that Th(N, =, x + 1, F (x)) is complete for this complexity class,
when F (x) = cx, xc or exp∞(x). This is proved in a standard way by defining
within 〈N, =, x+1, F (x)〉 a structure the theory of which is complete for this
class.

Consider the binary tree with two successors 〈{0, 1}∗, =, s0, s1〉, where
{0, 1}∗ is the set of words on alphabet {0, 1} and, for all u ∈ {0, 1}∗,
s0(u) = u0, s1(u) = u1. It is known that Th({0, 1}∗, =, s0, s1) is complete
for ATIME-ALT(2O(n), O(n)). This was proved by Volger (1983) [17] for the
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polynomial time reduction and by Compton and Henson (1990) [3] for the
reset log-lin reduction. We define functions r0 and r1 on N × {0, 1}∗ by
ri(n, u) = (n, si(u)), for i ∈ {0, 1}, n ∈ N and u ∈ {0, 1}∗. In the following
proposition, we prove that a structure isomorphic to 〈N × {0, 1}∗, =, r0, r1〉
can be defined within 〈N, =, x + 1, F (x)〉, which yields the required lower
bound.

Proposition 10.1 Let F (x) = cx, xc or exp∞(x) (c ≥ 2). Functions S0, S1

can be defined in 〈N, =, x + 1, F (x)〉 such that 〈N, =, S0, S1〉 is isomorphic to
〈N× {0, 1}∗, =, r0, r1〉.

Proof. We choose functions S0, S1 as the simplest ones such that, for all
(x, y) ∈ N2, S0(x) 6= x, S1(x) 6= x and S0(x) 6= S1(y).

• If F (x) = 2x, then S0(x) = 2x, S1(x) = 2x + 5.

• If F (x) = cx, c ≥ 3, then S0(x) = cx, S1(x) = cx + 1.

• If F (x) = xc, c ≥ 2, then S0(x) = xc + 1, S1(x) = xc + 3.

• If F (x) = exp∞(x), then S0(x) = exp∞(x), S1(x) = exp∞(x) + 4.

Then there exists an isomorphism

α : 〈N× {0, 1}∗, =, r0, r1〉 ∼= 〈N, =, S0, S1〉,

such that, if n ∈ N and λ is the empty word, then α(n, λ) is the n + 1-st
natural number not in the ranges of S0 and S1, and, if i ∈ {0, 1}, n ∈ N and
u ∈ {0, 1}∗, then α(ri(n, u)) = α(n, si(u)) = Si(α(n, u)). �

Corollary 10.2 Let F (x) = cx, xc or exp∞(x) (c ≥ 2). Then Th(N, =
, x + 1, F (x)) is complete for ATIME-ALT(2O(n), O(n)). �

11 Conclusion

The results of this paper lead naturally to some questions. First, what hap-
pens if we add the linear order on natural numbers? Then equality and
successor function are definable in the structure 〈N,≤〉. As we saw in the
introduction, Th(N,≤, 2x) and Th(N,≤, x2) are decidable, but their com-
plexities are open problems.
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We can also consider Th(N, =, x + 1, 2x). We proved that this theory is
also complete for ATIME-ALT(2O(n), O(n)) (unpublished).

We can consider theories of structures with successor function and two
other unary functions. Then, these structures become rather complex. Note
that, in 〈N, =, x+1, 2x, x2〉, we can express the famous Diophantine equation
x2 + 1 = 2y4. Ljunggren (1942) [11] proved that this equation has exactly
two solutions: x = y = 1 and x = 239, y = 13. The proof was hard enough to
justify the publication of a simplified proof by Steiner and Tzanakis (1991)
[15], which was simplified again by Hua (1994) [9], without turning out trivial.
In fact, the decidability of Th(N, =, x + 1, 2x, x2) is an open problem.

We know that in 〈N, =, x2, 2x〉 we can define 2x by

y = 2x ⇐⇒ 2y = (2x)2,

and then we can define x + 1 by

y = x + 1 ⇐⇒ 2y = 2.2x,

but the decidability of Th(N, =, x2, 2x) is an open problem.
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