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Abstract
Let TM(k, l) be the set of one-tape Turing machines with k states

and l symbols. It is known that the halting problem is decidable for
machines in TM(2, 3) and TM(3, 2). We prove that the decidability
of machines in TM(2, 4) and TM(3, 3) will be difficult to settle, by
giving machines in these sets for which the halting problem depends
on an open problem in number theory. A machine in TM(5, 2) with
the same result is already known, and, moreover, this machine is the
record holder for the busy beaver competitions : this is the machine
in TM(5, 2) which halts when starting from a blank tape, making
the greatest number of steps and leaving the greatest number of non-
blank symbols. We give potential winners for similar generalized busy
beaver competitions in TM(2, 3), TM(2, 4) and TM(3, 3).

Keywords : Turing machines; decidability; busy beaver competition;
3x + 1 problem; Collatz problem.

1 Introduction

Small devices can display complex behaviors. Among the most studied such
devices, one can find cellular automata, followed by Turing machines. In this

∗Corresponding address : 59 rue du Cardinal Lemoine, 75005 Paris, France.

1



paper, we consider one-tape Turing machines with a small number of states
and symbols. Let TM(k, l) denote the set of one-tape Turing machines with
k states and l symbols. Precise definitions are given in the next section. For
fixed k and l, the following questions have been studied, and are explained
and briefly surveyed below :

1. Are all machines in TM(k, l) decidable ?

2. Is there a universal machine in TM(k, l) ?

3. Is there an undecidable machine in TM(k, l) ?

4. Is there a machine in TM(k, l) which simulates the Collatz 3x + 1
problem ?

5. Is there a machine in TM(k, l) which simulates a Collatz-like problem ?

6. What are the best machines in TM(k, l) for the busy beaver competi-
tions ?

A useful survey for questions 1, 2 and 4 can be found in Margenstern
(2000) [12].

1.1 Are all machines in TM(k, l) decidable ?

That is : is the halting problem decidable for all machines in TM(k, l) ? The
halting problem for a Turing machine M asks whether M stops on an input
x. Formally, this is the set KM = {x ∈ Σ∗ : M stops on input x}, where Σ
is the finite input alphabet of M . The halting problem for M is decidable if
the set KM is recursive.

The halting problem is decidable for machines with only one symbol (triv-
ial) and for machines with only one state (Hermann (1968) [5]). Minsky
(1967) [17], Pavlotskaya (1973) [19], Diekert and Kudlek (1989) [4], Kudlek
(1996) [7] studied machines in TM(2, 2), that are decidable. Pavlotskaya
proved in 1978 the decidability of machines in TM(3, 2) (1978) [20] and in
TM(2, 3) (unpublished).

These results leave open the decidability of machines in TM(2, 4), TM(3, 3)
and TM(4, 2). In this paper, we give machines in TM(2, 4) and TM(3, 3)
with an halting problem depending on an open problem in number theory.
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Therefore, the decidability problem for these sets of machines will be difficult
to settle. But it is possible that all machines in TM(4, 2) can be proved to
be decidable.

1.2 Is there a universal machine in TM(k, l) ?

A Turing machine is universal if it can simulate all Turing machines, or,
equivalently, if its halting problem KM = {x ∈ Σ∗ : M stops on input x} is
m-complete. The construction of universal machines in TM(k, l) for small
values of k and l, in the last twenty years, is mainly the work of Rogozhin
(1982, 1996) [23,25].

Presently, it is known that there are universal Turing machines in the
following sets :

• TM(2, 18) : Rogozhin (1996) [25],

• TM(3, 9) : Kudlek and Rogozhin (2002) [8],

• TM(4, 6) : Rogozhin (1982, 1996) [23,25],

• TM(5, 5) : Rogozhin (1982, 1996) [23,25],

• TM(7, 4) : Minsky (1962, 1967) [16,17], Robinson (1991) [22], Rogozhin
(1982, 1996) [23,25], Baiocchi (2001) [1],

• TM(10, 3) : Rogozhin (1992, 1996) [24,25], Baiocchi (2001) [1],

• TM(19, 2) : Baiocchi (2001) [1].

In a table like Table 1, giving the properties of TM(k, l) according to k
and l, the sets TM(k, l) presently known to contain a universal Turing ma-
chine are situated on and above a line with hyperbolic shape, which may be
called the present universality line. Between this line and the decidable sets
TM(2, 3) and TM(3, 2), there is a finite number of sets TM(k, l) (presently
45), for which it is unknown whether they contain a universal Turing ma-
chine. A true universality line is situated somewhere between the present
universality line and the decidable sets, below which there is no universal
Turing machine.
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symbols
18 U
...

...
9 U
8 T
7
6 U
5 T U
4 O T U
3 D O T U
2 D D O T · · · U

2 3 4 5 6 7 8 9 10 · · · 19 states

Table 1: Type of Turing machine in TM(states, symbols) : U = Universal,
T = Three–x–plus–one, O = Open Collatz-like problem, D = all Decidable

1.3 Is there an undecidable machine in TM(k, l) ?

It is well known that there are recursively enumerable sets that are neither m-
complete, nor recursive. So, there are Turing machines that are not universal,
but have an undecidable halting problem. As above, a present undecidability
line and a true undecidability line can be defined, the first one being the
same as the present universality line.

Presently, we can settle the halting problem for a given Turing machine
either by producing an algorithm to prove it decidable, or by simulating a
universal machine to prove it undecidable. When facing an instruction table
for a Turing machine which is neither decidable, nor universal, we have no
method available to prove it undecidable, and no more method to prove it
not universal. Therefore, studying the undecidability line independently of
the universality line would require a breakthrough in computability science.

1.4 Is there a machine in TM(k, l) which simulates the
Collatz 3x + 1 problem ?

Let T : N− {0} → N be defined by

T (x) =

{
x/2 if x is even,
(3x + 1)/2 if x is odd.
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It is conjectured that iterating T on a positive integer always leads to the
loop T (1) = 2, T (2) = 1. This is a well known open problem in number
theory, known as 3x+1 problem, Collatz problem, etc. : see Lagarias (1985)
[9] for a survey.

If a machine in TM(k, l) simulates the 3x+1 problem, then we know that
the decidability of machines in TM(k, l) will not be settled until the 3x + 1
problem is solved. Presently, it is known that there are Turing machines
which simulate the 3x+1 problem in the following sets : TM(2, 8), TM(3, 5),
TM(4, 4), TM(5, 3) and TM(10, 2) (results from Margenstern (2000) [12], or
Baiocchi, cited in Margenstern (2000) [12]). These sets constitute a line with
hyperbolic shape in Table 1, which may be called the present 3x + 1 line.
This line is situated between the present universality line and the decidable
sets.

1.5 Is there a machine in TM(k, l) which simulates a
Collatz-like problem ?

The function T defined above for the 3x + 1 problem can also be written :

T (2m) = m,
T (2m + 1) = 3m + 2.

Given integers d ≥ 2, a0, a1, . . . , ad−1, b0, b1, . . . , bd−1, we can define a map-
ping g from N into N, such that, if m ∈ N and 0 ≤ r ≤ d− 1 :

g(dm + r) = arm + br.

This definition can also be written as : if 0 ≤ r ≤ d− 1, n ∈ N,

if n ≡ r (mod d), then g(n) = ar(n− r)/d + br.

Such functions are named one-state linear operators algorithms (OLOA) by
Kascak (1992) [6] and periodically linear functions by Wirsching (1998) [26].
In this paper, we need to extend such definitions to partial functions, unde-
fined on dN + r for some r, and to functions of pairs of integers. We call
these functions Collatz-like functions [15]. Iterating Collatz-like functions
leads to Collatz-like problems. Conway (1972) [3] and Kascak (1992) [6] gave
unsolvable (and m-complete) Collatz-like problems.
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In this paper, we give machines in TM(2, 4) and TM(3, 3) with halting
problems depending on Collatz-like problems which seem to be presently
open. Such a machine is known to exist in TM(5, 2) [15]. So the sets
TM(2, 4), TM(3, 3) and TM(5, 2) constitute a line with hyperbolic shape
in Table 1, which may be called the present Collatz-like line. This line is sit-
uated between the present 3x + 1 line and the decidable sets. It is unknown
whether there is a machine simulating a Collatz-like problem in TM(4, 2).

1.6 What are the best machines in TM(k, l) for the
busy beaver competitions ?

Let HTM(k, l) be the set of Turing machines in TM(k, l) which stop when
starting from a blank tape. For M ∈ HTM(k, l), let s(M) be the number of
computation steps made by Turing machine M , and let σ(M) be the number
of symbols distinct from the blank symbol left by M when it stops. The
greatest values of s(M) and σ(M) lead to the definition of the following
functions of k and l :

S(k, l) = max{s(M) : M ∈ HTM(k, l)},
Σ(k, l) = max{σ(M) : M ∈ HTM(k, l)}.

For l = 2 symbols, we get the classical busy beaver competition defined
by Rado (1962) [21]. It is known that :

• S(2, 2) = 6 and Σ(2, 2) = 4 : Rado (1962) [21],

• S(3, 2) = 21 and Σ(3, 2) = 6 : Lin and Rado (1965) [10],

• S(4, 2) = 107 and Σ(4, 2) = 13 : Brady (1983) [2] and Kopp (cited
by Machlin and Stout (1990) [11]),

• S(5, 2) ≥ 47176870 and Σ(5, 2) ≥ 4098 : Marxen and Buntrock
(1990) [13],

• S(6, 2) ≥ 3 × 101730 and Σ(6, 2) ≥ 1.29 × 10865 : Marxen and Bun-
trock in 2001 [14].

For l ≥ 3, we get two generalized busy beaver competitions between
machines in HTM(k, l). In this paper, we give machines showing that :

• S(2, 3) ≥ 38 and Σ(2, 3) ≥ 9,
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• S(2, 4) ≥ 7195 and Σ(2, 4) ≥ 90,

• S(3, 3) ≥ 40737 and Σ(3, 3) ≥ 208.

We conjecture that the lower bounds for (k, l) = (2, 3) and (2, 4) are the
best ones, but that the lower bounds for (k, l) = (3, 3) can be improved.

The machine in HTM(2, 4) giving the lower bounds is the machine consid-
ered in subsection 1.5, with an open Collatz-like halting problem. Similarly,
the machine in HTM(5, 2) giving the lower bounds was previously shown in
[15] to have an open Collatz-like halting problem.

2 Definitions and notations

The Turing machines we consider are the standard ones used in papers on
small universal Turing machines or busy beaver competition. They have a
unique one-dimensional tape infinite in both directions, and a unique two-
way read–write head. There is a blank symbol denoted by 0. Initially, a
finite word, the input, is written on the tape, other cells contain the blank
symbol, the head reads the leftmost symbol of the input, and the state is the
initial state. At each step, according to the current state of the machine and
the symbol read by the head, the symbol is modified, the head moves left or
right (and cannot stay reading the same cell), and the state is modified. The
computation stops when a special halting state is reached. We can suppose
that, when a machine halts, it writes a 1, moves right, and enters state H.

Formally, a Turing machine is M = (Q∪{H}, Σ, δ), where Q is the finite
set of non-halting states, Σ is the finite set of symbols (including the blank
symbol 0), and δ is the next move function :

δ : Q× Σ → (Σ× {L, R} ×Q) ∪ {(1, R, H)}

If δ(q, a) = (b, D, q′), then, when the state is q and the head reads symbol
a, Turing machine M replaces symbol a by symbol b, moves in direction
D ∈ {L, R} (L for left and R for right), and enters state q′. We denote
non-halting states by A, B, C, . . ., and symbols by 0, 1, 2, . . ..

Let TM(k, l) be the set of Turing machines with card(Q) = k states and
card(Σ) = l symbols. Then

card TM(k, l) = (2kl + 1)kl
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Let Σ∗ be the set of finite words from alphabet Σ, λ the empty word, |x|
the length of x ∈ Σ∗, and Σn the set of words with length n. If x ∈ Σ∗, then
we define x0 = λ, x1 = x, and, for any n ≥ 1, xn+1 = xnx. An infinite to the
right string of 0’s is denoted by 0ω, and an infinite to the left string of 0’s,
by ω0.

A configuration of machine M is a two-side infinite string ω0x(Za)y0ω,
where Z ∈ Q ∪ {H}, a ∈ Σ, x, y ∈ Σ∗. Then, the word xay ∈ Σ∗ is written
on the tape, between two infinite strings of 0’s, the state is Z and the head
scans symbol a.

The initial configuration of M on an input x1x2 . . . xn ∈ Σ∗ is
ω0(Ax1)x2 . . . xn0ω.

On a blank tape, M starts from ω0(A0)0ω. Note that, if x ∈ Σ∗, M has the
same behavior on x0n, for all n ∈ N.

If C1 and C2 are two configurations of M , and p ∈ N, then we write
C1 ` (p) C2 if the next move function δ leads from C1 to C2 in p steps. We
write C ` (p) END if configuration C leads in p steps to a final configuration,
that is a configuration with final state H.

3 Turing machines with 2 states and 3 sym-

bols

The machine M0 defined below is the record holder for the generalized busy
beaver competitions in TM(2, 3).

Definition 3.1 Instruction table for M0 ∈ TM(2, 3) :

M0 0 1 2
A 1RB 2LB 1RH
B 2LA 2RB 1LB

Proposition 3.2 (i) Machine M0 halts on a blank tape in 38 steps, leav-
ing 9 non-blank letters : s(M0) = 38 and σ(M0) = 9.

(ii) S(2, 3) ≥ 38 and Σ(2, 3) ≥ 9.

Proof : it can be checked that ω0(A0)0ω ` (38) ω0271(H2)0ω. �

We conjecture that M0 is the winner in the generalized busy beaver com-
petition in TM(2, 3), so S(2, 3) = 38 and Σ(2, 3) = 9.
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4 Turing machines with 2 states and 4 sym-

bols

The machine M1 defined below is the current record holder for the generalized
busy beaver competitions in TM(2, 4).

Definition 4.1 Instruction table for M1 ∈ TM(2, 4) :

M1 0 1 2 3
A 1RB 2LA 1RA 1LA
B 3LA 1RH 2RB 2RA

Proposition 4.2 (i) Machine M1 halts on a blank tape in 7195 steps,
leaving 90 non-blank letters : s(M1) = 7195 and σ(M1) = 90.

(ii) S(2, 4) ≥ 7195 and Σ(2, 4) ≥ 90.

Proof : it can be checked that ω0(A0)0ω ` (7195) ω012881(H0)0ω. �

We conjecture that M1 is the winner in the generalized busy beaver com-
petition in TM(2, 4), so S(2, 4) = 7195 and Σ(2, 4) = 90.

The halting problem for machine M1 depends on a Collatz-like problem,
as shown by the following proposition.

Proposition 4.3 Let denote the following configurations of M1 : for every
n ≥ 0, C1(n, 0) = ω0(A0)2n0ω, and C1(n, 1) = ω0(A0)2n30ω. Then, for
every k ≥ 0,

C1(3k, 0) ` (15k2 + 7k + 3) C1(5k + 1, 1)
C1(3k + 1, 0) ` (15k2 + 22k + 11) END
C1(3k + 2, 0) ` (15k2 + 27k + 13) C1(5k + 4, 0)

C1(3k, 1) ` (15k2 + 28k + 16) END
C1(3k + 1, 1) ` (15k2 + 33k + 19) C1(5k + 5, 0)
C1(3k + 2, 1) ` (15k2 + 43k + 33) C1(5k + 7, 1)

Proof : The result is given by a tedious analysis of the behavior of machine
M1. �
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So the halting problem for M1 involves the study of the function g1 :
N× {0, 1} → N× {0, 1} defined by

g1(3k, 0) = (5k + 1, 1),
g1(3k + 1, 0) undefined,
g1(3k + 2, 0) = (5k + 4, 0),

g1(3k, 1) undefined,
g1(3k + 1, 1) = (5k + 5, 0),
g1(3k + 2, 1) = (5k + 7, 1).

The behavior of iterating g1 on an element of N×{0, 1} is an open problem.
We can conjecture that iterating g1 always leads to an undefined value, but
no method is known to prove this result. Note that no less than 23 iterations
of g1 on (81, 0) lead to an undefined value, and so, that machine M1 stops
on ω0(A0)2810ω in more than 1014 computation steps.

5 Turing machines with 3 states and 3 sym-

bols

We define below three machines M2, M3, M4 ∈ TM(3, 3). Machine M2 is the
current record holder for the generalized busy beaver competition in TM(3, 3)
according to the number of steps taken by the computation. Machine M3 is
the current record holder according to the number of non-blank letters left
on the tape. Machine M4 has a halting problem that depends on an open
Collatz-like problem.

Definition 5.1 Instruction tables for M2, M3, M4 ∈ TM(3, 3) :

M2 0 1 2
A 1RB 0LA 1LA
B 2RC 1RB 1RA
C 2LA 0RB 1RH

M3 0 1 2
A 1RB 2RA 1LA
B 1LC 1RC 0LA
C 2LA 2RB 1RH
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M4 0 1 2
A 1LB 0LB 2RB
B 2LC 2LB 1RB
C 2RA 2LA 1RH

Proposition 5.2 (i) Machine M2 halts on a blank tape in 40737 steps,
leaving 200 non-blank letters : s(M2) = 40737 and σ(M2) = 200.

(ii) S(3, 3) ≥ 40737.

Proof : it can be checked that
ω0(A0)0ω ` (40737) ω01(21111)362112111121(H1)012012120120ω. �

We conjecture that a better machine for function s can be found in
TM(3, 3), so that S(3, 3) > 40737.

Proposition 5.3 (i) Machine M3 halts on a blank tape in 11082 steps,
leaving 208 non-blank letters : s(M3) = 11082 and σ(M3) = 208.

(ii) Σ(3, 3) ≥ 208.

Proof : it can be checked that ω0(A0)0ω ` (11082) ω011(21)1021(H1)0ω.
�

We conjecture that a better machine for function σ can be found in
TM(3, 3), so that Σ(3, 3) > 208.

Note that, for machine M3, we have

ω0(A0)12k+10ω ` (5k2 + 25k + 21) ω0(A0)15k+60ω,
ω0(A0)12k+20ω ` (2k + 5) END

Let g3 : N → N be defined by :

g3(2k + 1) = 5k + 6
g3(2k) undefined

Then iterating g3 on a positive integer always leads to an undefined value,
so the halting problem for machine M3 does not depend on a true Collatz-
like problem, but on a ‘pseudo-Collatz-like’ problem which is not an open
problem. The integers leading to many iterations of g3 are given by integer
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approximations of the solution of the equation x = 2k + 1 = 5k + 6 in the
ring of 2-adic integers (that is k = −5/3, x = −7/3 = 1 + 2 +

∑∞
n=2 22n).

The halting problem for machine M4 depends on a Collatz-like problem,
as shown by the following proposition.

Proposition 5.4 Let, for every n ≥ 0, C4(n) denote the following configu-
ration of M4 : C4(n) = ω01n(B0)220ω.
Then ω0(A0)2n0ω ` (3n + 11) C4(n + 1), and, for every k ≥ 0,

C4(4k + 4) ` (12k2 + 46k + 41) C4(6k + 7)
C4(4k + 1) ` (12k2 + 28k + 25) C4(6k + 5)
C4(4k + 2) ` (12k2 + 16k + 8) END
C4(8k + 3) ` (156k2 + 242k + 86) C4(18k + 9)
C4(8k + 7) ` (156k2 + 344k + 191) END

Proof : The result is given by a tedious analysis of the behavior of M4. �

Note that, for M4,
ω0(A0)0ω ` (13044) ω021(H2)21440ω, so s(M4) =

13044, and σ(M4) = 147.

Let g4 : N− {0} → N− {0} be defined by :

g4(4k + 4) = 6k + 7
g4(4k + 1) = 6k + 5
g4(4k + 2) undefined
g4(8k + 3) = 18k + 9
g4(8k + 7) undefined

As for function g1 defined above, we can conjecture that iterating g4 on
N−{0} always leads to an undefined value, but no method is known to solve
such a problem.

6 Conclusion

It is clear from Table 1 that the present universality line and the present
3x + 1 line could be lowered by some later works. The present Collatz-like
line is already on its lowest possible level, with the possible exception of
TM(4, 2), but we conjecture that all machines in this set can be proved to
be decidable.
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Secondly, note that S(k, l) > S(l, k) and Σ(k, l) > Σ(l, k) for (k, l) =
(2, 3) and (2, 4). We conjecture that this is true for any k < l, k ≥ 2. This
lack of symmetry between the number of states k and the number of symbols
l can be found again in the following facts :

• there are universal machines :

– in TM(19, 2) and TM(2, 18),

– in TM(10, 3) and TM(3, 9),

– in TM(7, 4) and TM(4, 6),

• there are 3x + 1 machines in TM(10, 2) and TM(2, 8),

• there are open Collatz-like machines in TM(5, 2) and TM(2, 4).

Finally, note that Oberschelp et al. (1988) [18] consider Turing machines
that cannot print and move in one computation step, and are defined by
quadruples instead of quintuples. A parallel study in this context is still to
be done.
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